Math, asked by mn121, 8 months ago

Please solve it... Question 6
Using the principle of mathematical induction prove that the following is true for all n natural numbers

Attachments:

Answers

Answered by shadowsabers03
2

So we have,

P(n):\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)\dots\left(1-\dfrac{1}{(n+1)^2}\right)=\dfrac{n+2}{2(n+1)}

Consider P(1).

\longrightarrow LHS=1-\dfrac{1}{2^2}=\dfrac{3}{4}

\longrightarrow RHS=\dfrac{1+2}{2(1+1)}=\dfrac{3}{4}

Hence P(1) is true. So assume P(k) is true.

P(k):\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)\dots\left(1-\dfrac{1}{(k+1)^2}\right)=\dfrac{k+2}{2(k+1)}

Consider P(k+1).

P(k+1):\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)\dots\left(1-\dfrac{1}{(k+2)^2}\right)=\dfrac{k+3}{2(k+2)}

Let's check whether it's true.

\longrightarrow LHS=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)\dots\left(1-\dfrac{1}{(k+1)^2}\right)\left(1-\dfrac{1}{(k+2)^2}\right)

From P(k),

\longrightarrow LHS=\dfrac{k+2}{2(k+1)}\left(1-\dfrac{1}{(k+2)^2}\right)

\longrightarrow LHS=\dfrac{k+2}{2(k+1)}\cdot\dfrac{(k+2)^2-1}{(k+2)^2}

\longrightarrow LHS=\dfrac{(k+2)^2-1^2}{2(k+1)(k+2)}

\longrightarrow LHS=\dfrac{(k+2+1)(k+2-1)}{2(k+1)(k+2)}

\longrightarrow LHS=\dfrac{(k+3)(k+1)}{2(k+1)(k+2)}

\longrightarrow LHS=\dfrac{k+3}{2(k+2)}

\longrightarrow LHS=RHS

Hence P(k+1) is true whenever P(k) is true.

Therefore P(n) is true \forall\,n\in\mathbb{N}.

Similar questions