Math, asked by ritikpaswan518, 1 year ago

please solve it quickly...​

Attachments:

Answers

Answered by Anonymous
29

Answer:

\displaystyle{\implies{\dfrac{2}{3}\sqrt a}}

Step-by-step explanation:

Given :

\displaystyle{ \lim_{x \to a}\dfrac{x-a}{x^{3/2}-a^{3/2}}}

Using standard limit i.e.

\displaystyle{ \lim_{x \to a}\dfrac{x^m-a^m}{x^{n}-a^{n}}=\dfrac{m}{n}a^{m-n}}

Now ,

\displaystyle{ \lim_{x \to a}\dfrac{x-a}{x^{3/2}-a^{3/2}}}\\\\\\\displaystyle{\dfrac{1}{\lim_{x \to a}\dfrac{x-a}{x^{3/2}-a^{3/2}}}}\\\\\\\displaystyle{\dfrac{1}{\lim_{x \to a}\dfrac{x^1-a^1}{x^{3/2}-a^{3/2}}}}\\\\\\\displaystyle{\implies\dfrac{1}{\dfrac{x^{3/2}-a^{3/2}}{x^1-a^1}}}\\\\\\\displaystyle{\implies\dfrac{1}{\dfrac{3}{2}\times\left(a^{1-3/2\right)}}}\\\\\\\displaystyle{\implies\dfrac{1}{\dfrac{3}{2}\times\left(a^{-1/2\right)}}}

\displaystyle{\implies{\dfrac{2}{3}\times\left(a^{1/2\right)}}}\\\\\\\displaystyle{\implies{\dfrac{2}{3}\sqrt a}}

Thus we get answer.


Anonymous: Yup please once more time :)
mysticd: https://brainly.in/question/1469919
mysticd: plz , give me edit option
mysticd: ok
Anonymous: Given :)
Anonymous: Me corrected too thank you for correction :)
mysticd: Thank you .
mysticd: :)
mysticd: why did you took 1/[(x-a)/()] ,Apply the formula as it is.
Anonymous: I confirmed yours answer and I'll do ot later :)
Answered by mysticd
7

Answer:

\lim_{x\to a}\frac{x-a}{x^{\frac{3}{2}}-a^{\frac{3}{2}}}=\frac{2}{3\sqrt{a}}

Step-by-step explanation:

\lim_{x\to a}\frac{x-a}{x^{\frac{3}{2}}-a^{\frac{3}{2}}}

We \:know \: that ,\\\boxed {\lim_{x\to a }\frac{x^{m}-a^{m}}{x^n-a^{n}}=\frac{m}{n}a^{(m-n)}}

=\lim_{x\to a}\frac{x^{1}-a^{1}}{x^{\frac{3}{2}}-a^{\frac{3}{2}}}

 Here , m = 1 , n = \frac{3}{2}

 = \frac{1}{\frac{3}{2}}\times a^{1-\frac{3}{2}}\\=\frac{2}{3} a^{\frac{2-3}{2}}\\=\frac{2}{3} a^{\frac{-1}{2}}\\=\frac{2}{3}\times \frac{1}{a^{\frac{1}{2}}}\\=\frac{2}{3\sqrt{a}}

Therefore,

\lim_{x\to a}\frac{x-a}{x^{\frac{3}{2}}-a^{\frac{3}{2}}}=\frac{2}{3\sqrt{a}}

•••♪


Anonymous: Awesome :)
Similar questions