Math, asked by Anonymous, 6 months ago

Please solve it's urgent​

Attachments:

Answers

Answered by Anonymous
9

p(m + 1) = (m + 1)²

Given :-

\sf{p(m) = 1 + 3 + 5 + .........+ (2m - 1) = m^{2}}

To Find :-

\sf{Sum \: of \: (m + 1) \: terms \: of \: this \: series -}

\: \: \: \: \sf{p(m + 1) = ?}

Usable Formula :-

This is a sequence of sum of the consecutive odd numbers .

We know :-

\sf{1 + 3 + 5 + ..............+ (2m - 1) }

\sf{Sum \: of \: first \: m \: odd \: number = m^{2}}

\sf{Sum \: of \: first \: n \: terms \: of \: a \: consecutive \: series -}

\: \: \: \: \sf{Sn =\dfrac{n}{2}[a + An]}

As Confirmation :-

\: \: \: \sf{Sm =\dfrac{m}{2}[1 + (2m - 1)]}

\: \: \: \sf{Sm =\dfrac{m}{2}(2m)}

\: \: \: \sf{Sm = m\times m = m^{2}}

Solution :-

\sf{A(m + 1) = 2(m + 1) - 1 = 2m + 2 - 1 = 2m + 1}

\sf{p(n + 1) = 1 + 3 + 5 + .......+ (2m + 1)}

Here ,

\: \: \: \: \sf{first \: term \: (a) = 1}

\sf{(m + 1)th \: term = (2m + 1)}

Then ,

\sf{P(m + 1) =\dfrac{(m + 1)}{2}[1 + (2m + 1)]}

\: \: \: \: \: \: \: \: \: \: \: \: \:  \sf{=\dfrac{(m + 1)}{2}(2m + 2)}

\: \: \: \: \: \: \: \: \: \: \: \: \:  \sf{=\dfrac{(m + 1)}{2}\times 2(m + 1)}

\: \: \: \: \: \: \: \: \: \: \: \: \: \sf{= (m + 1)^{2}}

Similar questions