Please solve it's urgent and no spams or else...... and who will give the correct answer wid full explanation before 5:00 I will mark as the brainliest.
Answers
✭ ∆ABC & ∆DBC are two isosceles triangles
✭ AD is produced to meet at point P
━━━━━━━━━━━━━
◈ ∆ABD ≅ ∆ACD
◈ ABP ≅ ∆ACP
━━━━━━━━━━━━━
☯
◕ AB = AC
◕ BD = DC as the given triangles are isosceles
So in ∆ADB & ∆ACD
➝ «« Isosceles Triangle »»
➝ «« Common »»
➝ «« Isosceles Triangle »»
∆ADB ≅ ∆ACD ««« SSS »»»
Similarly in ∆ABP & ∆ACP
➳ «« Isosceles Triangle »»
➳ «« Angles opposite to equal sides are equal
➳ «« Common »»
∆ABP ≅ ∆ACP ««« SAS »»»
━━━━━━━━━━━━━━━━━━
✭ ∆ABC & ∆DBC are two isosceles triangles
✭ AD is produced to meet at point P
━━━━━━━━━━━━━
◈ ∆ABD ≅ ∆ACD
◈ ABP ≅ ∆ACP
━━━━━━━━━━━━━
☯
◕ AB = AC
◕ BD = DC as the given triangles are isosceles
So in ∆ADB & ∆ACD
➝ «« Isosceles Triangle »»
➝ «« Common »»
➝ «« Isosceles Triangle »»
∆ADB ≅ ∆ACD ««« SSS »»»
Similarly in ∆ABP & ∆ACP
➳ «« Isosceles Triangle »»
➳ «« Angles opposite to equal sides are equal
➳ «« Common »»
∆ABP ≅ ∆ACP ««« SAS »»»
━━━━━━━━━━━━━━━━━━