please solve it's urjent
FACTORIES ÷
1) 9-a²+2ab - b²
2) 1+2ab-(a²+b²)
3) x²-y²+6y-9
4) a²-b²+2ab-c²
5) x²-2+ 1/x² - y²
please solve then I will mark brainist and gives 25 pts please solve it for class 9
Answers
1)
2)
3)
4)
5)
Step-by-step explanation:
1).
9 - a² + 2ab - b²
=> 3² - ( a² - 2ab + b²)
=> 3² - (a-b)²
=> ( 3- a +b) (3+a-b)
2)
by simplifying
1 +2ab - a² - b²
1 - (a² - 2ab + b²)
1 - (a -b)²
wkt , (a² - b²) = (a+b)(a-b)
as 1 = 1²
1² - (a-b)²
= (1+a-b)(1-a+b)
3)
x² - y² + 6y - 9
[Take minus sign common after x²]
= x² - (y² - 6y + 9)
[ Now, we can see a perfect square.
a² - 2ab + b² = (a-b)² .
Here, a = y, b=3]
= x² - (y - 3)²
[ Now, a² - b² = (a+b)(a-b) ]
= (x + (y-3)) (x - (y-3))
= (x + y - 3)(x - y + 3)
4)
Rearrenge the polynominal ;-
a^2+2ab+b^2-c^2
The a and b is a perfect square , with the formula ( a + b)^2 = a^2+2ab+b^2
So, (a+b)^2 - c^2
This leaves you with a difference of squares , whose formula is ( a+b)(a- b)= a^2 - b^2
So, you can give ( a + b+c) ( a-b-c).
5)
x^2 - 2 + 1/x^2 - y^2
= x^2 - 1/(x + y) (x - y)
= x^2 - 1^2/(x + y) (x - y)
= (x + 1) (x - 1)/(x + y) (x - y)