Math, asked by Vernikavajpayee06, 6 months ago

Please solve it
Std 10 ( ratio and proportion)

Attachments:

Answers

Answered by Cynefin
15

 \LARGE{ \underline{\underline{ \orange{ \sf{Required \: answer:}}}}}

GiveN:

  •  \rm{ \dfrac{ \sqrt{a + x} +  \sqrt{a - x}  }{ \sqrt{a + x} -  \sqrt{a - x}  }  = b}

To FinD:

  • We have to solve for x.

Step-wise-Step Explanation:

Multiply \rm{ \sqrt{a + x}   +  \sqrt{a - x} } in both Numerator and denominator in LHS.

 \rm{ \dfrac{ (\sqrt{a + x} +  \sqrt{a - x} )( \sqrt{a + x}  +  \sqrt{a - x}  )}{ (\sqrt{a + x} -  \sqrt{a - x})( \sqrt{a + x}  +  \sqrt{a - x}   )}  = b}

Simplifying using Identities,

  \rm{ \dfrac{( \sqrt{a + x}  +  \sqrt{a - x} ) {}^{2} }{( \sqrt{a + x} ) {}^{2}  - ( \sqrt{a - x} ) {}^{2}  } = b}

 \rm{ \dfrac{a + x + a - x + 2 \sqrt{ {a}^{2}  -  {x}^{2} } }{a + x - a + x}  = b}

 \rm{ \dfrac{2a + 2 \sqrt{ {a}^{2}  -  {x}^{2} } }{2x}  = b}

Taking 2 in common from numerator and denominator and cancelling it.

  \rm{ \dfrac{a +  \sqrt{ {a}^{2} -  {x}^{2}  } }{x}  = b}

Now multiplying x in RHS because inverse of division is multiplication.

 \rm{a +  \sqrt{ {a}^{2} -  {x}^{2}  }  = bx}

Subtracting a from RHS,

 \rm{ \sqrt{ {a}^{2}  -  {x}^{2} }  = bx - a}

Squaring both sides,

 \rm{ {a}^{2}  -  {x}^{2}  =  {b}^{2} {x}^{2}   +  {a}^{2}  - 2abx}

  \rm{ {b}^{2}  {x}^{2}  +  {x}^{2}  - 2abx = 0}

Taking x common, then it will be 0.

 \rm{ {b}^{2} x + x - 2ab = 0}

Now taking x common from b²x and x.

 \rm{x( {b}^{2}  + 1) - 2ab = 0}

Then, x will be equal to:

 \rm{ \red{x =  \dfrac{2ab}{ {b}^{2} + 1 } }}

And hence this is the required value of x.


EliteSoul: Great
Cynefin: Thank you :)
Anonymous: Awesome!
BrainlyPopularman: Fabulous ♥️
ButterFliee: Great :)
Answered by Anonymous
170

♣ Qᴜᴇꜱᴛɪᴏɴ :

Using the properties of proportion :

Solve for x : \sf{\displaystyle\frac{\sqrt{a+x}+\sqrt{a-x}}{\sqrt{a+x}-\sqrt{a-x}}=b}

★═════════════════★

♣ ᴀɴꜱᴡᴇʀ :

\large\boxed{\sf{x=\dfrac{2ab}{b^2+1}}}

★═════════════════★

♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :

\sf{\dfrac{\sqrt{a+x}+\sqrt{a-x}}{\sqrt{a+x}-\sqrt{a-x}}=b}

Solve it using Componendo and Dividendo Rule :

This rule states :

If \sf{\dfrac{a}{b}=\dfrac{c}{d}} , then \sf{\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}}

\sf{\dfrac{\sqrt{a+x}+\sqrt{a-x}}{\sqrt{a+x}-\sqrt{a-x}}=\dfrac{b}{1}}

\implies\sf{\dfrac{(\sqrt{a+x}+\sqrt{a-x})+(\sqrt{a+x}-\sqrt{a-x})}{(\sqrt{a+x}+\sqrt{a-x})-(\sqrt{a+x}-\sqrt{a-x})}=\dfrac{b+1}{b-1}}

\implies\sf{\dfrac{\sqrt{a+x}+\sqrt{a-x}+\sqrt{a+x}-\sqrt{a-x}}{\sqrt{a+x}+\sqrt{a-x}-\sqrt{a+x}+\sqrt{a-x}}=\dfrac{b+1}{b-1}}

\implies\sf{\dfrac{\sqrt{a+x}+\sqrt{a+x}}{\sqrt{a-x}+\sqrt{a-x}}=\dfrac{b+1}{b-1}}

\implies\sf{\dfrac{2\cdot\sqrt{a+x}}{2\cdot\sqrt{a-x}}=\dfrac{b+1}{b-1}}

\implies\sf{\dfrac{\sqrt{a+x}}{\sqrt{a-x}}=\dfrac{b+1}{b-1}}

Squaring we get,

\sf{\left(\dfrac{\sqrt{a+x}}{\sqrt{a-x}}\right)^2=\left(\dfrac{b+1}{b-1}\right)^2}

\implies\sf{\dfrac{(\sqrt{a+x})^2}{(\sqrt{a-x})^2}=\dfrac{(b+1)^2}{(b-1)^2}}

\implies\sf{\dfrac{a+x}{a-x}=\dfrac{b^2+2b+1}{b^2-2b+1}}

Apply Componendo and Dividendo Rule again :

If \sf{\dfrac{a}{b}=\dfrac{c}{d}} , then \sf{\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}}

\implies\sf{\dfrac{a+x}{a-x}=\dfrac{b^2+2b+1}{b^2-2b+1}}

\implies\sf{\displaystyle\frac{\left(a+x\right)+\left(a-x\right)}{\left(a+x\right)-\left(a-x\right)}=\frac{\left(b^2+2b+1\right)+\left(b^2-2b+1\right)}{\left(b^2+2b+1\right)-\left(b^2-2b+1\right)}}

\implies\sf{\dfrac{a+x+a-x}{a+x-a+x}=\dfrac{b^2+2b+1+b^2-2b+1}{b^2+2b+1-b^2+2b-1}}

\implies\sf{\dfrac{a+a}{x+x}=\dfrac{b^2+b^2+2}{2b+2b}}

\implies\sf{\dfrac{2a}{2x}=\dfrac{2b^2+2}{4b}}

\implies\sf{\dfrac{a}{x}=\dfrac{2b^2+2}{4b}}

\implies\sf{\dfrac{x}{a}=\dfrac{4b}{2b^2+2}}

Multiplying both sides by a :

\implies\sf{\dfrac{x}{a} \times \:a=\dfrac{4b}{2b^2+2}\times\:a}

\implies\sf{x=\dfrac{4ab}{2b^2+2}}

Taking 2 as common in R.H.S :

\implies\sf{x=\dfrac{2(2ab)}{2(b^2+1)}}

Cancelling 2 in numerator and denominator :

\large\boxed{\sf{x=\dfrac{2ab}{b^2+1}}}


Anonymous: Great!
BrainlyPopularman: Nice
EliteSoul: Great
ButterFliee: Great
Similar questions