Please solve it.. step by step..
Attachments:
Answers
Answered by
1
Answer:
Step-by-step explanation:
c-√(a²+b²) <= acosx+bsinx+c <= c+√(a²+b²)
─► -√(a²+b²) <= acosx+bsinx <= √(a²+b²)
─► │acosx+bsinx │ <= √(a²+b²)
let, a=ysinΘ, b=ycosΘ, so, a²+b²=y²(sin²Θ+cos²Θ)=y²
─► │ysinΘcosx+ycosΘsinx │ <= √(a²+b²)
─► │ysin(Θ+x) │ <= √(a²+b²)
─► │ysin(Θ+x) │ <= √y²
─► │sin(Θ+x) │ <= 1 ..............................(i)
for any value of (Θ+x) ..(i) is true
so, (Θ+x) belongs to R, where Θ = tan^(-1) (a/b)
x belongs to R -tan^(-1) (a/b)
we can write x belongs to R
Similar questions
Social Sciences,
4 months ago
Math,
4 months ago
Environmental Sciences,
9 months ago
Physics,
9 months ago
Science,
1 year ago