Physics, asked by manojjain201973, 9 months ago

please solve it step by step.. ​

Attachments:

Answers

Answered by nooblygeek
1

Answer:

\sqrt 2

Explanation:

If \vec{a}+\vec{b} is perpendicular to \vec a then (\vec a + \vec b) \cdot \vec a = 0. By the distrubtive property of the dot product we get that (\vec a\cdot \vec a) + (\vec a \cdot \vec b) = 0. This is then the same as | \vec a |^2 + (\vec a \cdot \vec b) = 0, hence | \vec a | ^2 = - (\vec a + \vec b).

Similarily, if (2\vec a + \vec b) is perpendicular to \vec b, then (2\vec a+\vec b )\cdot \vec b = 0. Again, by the distributive property we get that (2\vec a \cdot \vec b ) + (\vec b \cdot \vec b) = 0. This is equivalent to 2(\vec a \cdot \vec b) + |\vec b |^2 = 0, hence | \vec b|^2 = -2 (\vec a \cdot \vec b).

Then we get that \frac{|\vec b|^2}{|\vec a|^2} = \frac{-2(\vec a \cdot \vec b)}{-( \vec a \cdot \vec b)}=2.

Taking The square root on both sides then gives

\frac{|\vec b |}{| \vec a | } = \sqrt 2.

Similar questions