Math, asked by pompa85, 1 year ago

Please solve it step by step, I'm serious, ​

Attachments:

Answers

Answered by Anonymous
5

 \frac{ { \sec }^{2}(90 -  \alpha) -  { \cot}^{2}   \alpha  }{2( { \sin }^{2}25 +  { \sin }^{2}65)  }  +  \frac{2 { \cos}^{2}60. { \tan}^{2}28 .{ \tan}^{2}  62 }{ \sin30 . \cos60 }  \\  \\  =  >  \frac{ { \csc}^{2} \alpha  -  { \cot }^{2}  \alpha  }{2(  { \sin(90 - 65) }^{2}  +  { \sin }^{2}65)  }  +  \frac{2 { \cos }^{2}60. { \tan(90 - 62) }^{2} . { \tan}^{2}62  }{ \sin30. \cos60  }  \\  \\  =  >  \frac{1}{2( { \cos}^{2}65 +  { \sin }^{2}  65)}  +  \frac{2 { \cos }^{2}60. { \cot}^{2} 62. { \tan }^{2}  62}{ \sin30. \cos60 }  \\  \\  =  >  \frac{1}{2 \times 1}  +  \frac{2 \times  { (\frac{1}{2}) }^{2}  \times 1}{ \frac{1}{2}  \times  \frac{1}{2} }  \\  \\  =  >  \frac{1}{2}  + 2 \\  \\  =  >   \frac{5}{2}

I hope it will be helpful for you ✌️☺️

Follow Me .... ☺️☺️

Answered by Anonymous
0

Step-by-step explanation:

answer : 1.6 × 10^25 MeV

Let's first find binding energy of each copper nucleus and then we can easily find binding energy of 3.0 g of ^{63}_{29}Cu

29

63

Cu .

we know,

mass of each proton = 1.00783u

mass of each neutron = 1.00867u

in ^{63}_{29}Cu

29

63

Cu presents 29 protons and (63 - 29) = 34 neutrons.

now mass of 29 protons = 29 × 1.00783 = 29.22707u

mass of 34 neutrons = 34 × 1.00867u

= 34.29478u

Total theoretical mass = 29.22707u + 34.29478u = 63.52185u

mass defect , ∆m = 63.52185u - 62.92960u = 0.59225u

so, binding energy of each Cu nucleus = ∆m × 931MeV

= 0.59225 × 931 = 551.385MeV

let's find number of cu atoms in 3g .

number of cu atoms = 3g/63g × 6.023 × 10²³ = 2.86 × 10²²

Total binding energy in 3g of copper = 2.86 × 10²² × 551.385 MeV = 1.57696 × 10^25 MeV ≈ 1.6 × 10^25MeV

Similar questions