Math, asked by s1697divye2021, 1 day ago

please solve it
  ({(a + 1 \div b)}^{m}  \times  {(a - 1 \div b)}^{n} ) \div ( {(b + 1 \div a)}^{m}  \times ( {b - 1 \div a)}^{n}  = a \div b
please solve it​

Answers

Answered by mathdude500
29

 \large\underline{\sf{Solution-}}

Given expression is

\rm \: \dfrac{{\bigg(a + \dfrac{1}{b} \bigg) }^{m}{\bigg(a - \dfrac{1}{b} \bigg) }^{n}}{{\bigg(b + \dfrac{1}{a} \bigg) }^{m}{\bigg(b - \dfrac{1}{a} \bigg) }^{n}}  = \dfrac{a}{b}  \\

can be rewritten as on taking LCM in each bracket,

\rm \: \dfrac{{\bigg(\dfrac{ab + 1}{b} \bigg) }^{m}{\bigg(\dfrac{ab - 1}{b} \bigg) }^{n}}{{\bigg(\dfrac{ab + 1}{a} \bigg) }^{m}{\bigg(\dfrac{ab - 1}{a} \bigg) }^{n}}  = \dfrac{a}{b}  \\

We know,

\boxed{\tt{ {\bigg(\dfrac{x}{y} \bigg) }^{n} =  \frac{ {x}^{n} }{ {y}^{n} } \: }} \\

So, using this identity, we get

\rm \: \dfrac{\dfrac{ {(ab + 1)}^{m} }{ {b}^{m} } \dfrac{ {(ab - 1)}^{n} }{ {b}^{n} } }{\dfrac{ {(ab + 1)}^{m} }{ {a}^{m} } \dfrac{ {(ab - 1)}^{n} }{ {a}^{n} } }  = \dfrac{a}{b}  \\

So, after canceling the like terms, we get

\rm \: \dfrac{ {a}^{m}  \times  {a}^{n} }{ {b}^{m}  \times  {b}^{n} }  = \dfrac{a}{b}  \\

We know,

\boxed{\tt{  {x}^{m} \times  {x}^{n} =  {x}^{m + n} }} \\

So, using this, we get

\rm \: \dfrac{ {a}^{m + n} }{ {b}^{m + n} }  = \dfrac{a}{b}  \\

\rm \: {\bigg(\dfrac{a}{b} \bigg) }^{m + n} = \dfrac{a}{b}  \\

\rm \: {\bigg(\dfrac{a}{b} \bigg) }^{m + n} = {\bigg(\dfrac{a}{b} \bigg) }^{1}  \\

We know,

\boxed{\tt{  {x}^{m} =  {x}^{n} \:  \: \rm\implies \:m = n \: }} \\

So, using this, we get

\rm \: m + n = 1 \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\tt{  {x}^{0} = 1 \: }} \\

\boxed{\tt{  {x}^{ - n} =   \frac{1}{ {x}^{n} } \: }} \\

\boxed{\tt{ {\bigg(\dfrac{x}{y} \bigg) }^{ - n} = {\bigg(\dfrac{y}{x} \bigg) }^{n} \: }} \\

\boxed{\tt{  {x}^{m}  \times  {y}^{m}  =  {(xy)}^{m}  \: }} \\

\boxed{\tt{  {x}^{m} \div  {y}^{m}  = {\bigg(\dfrac{x}{y} \bigg) }^{m} \: }} \\

\boxed{\tt{  {0}^{0}  \: is \: not \: defined \: }} \\

Answered by maheshtalpada412
15

Step-by-step explanation:

\huge\mathcal\colorbox{yellow}{{\color{cyan}{\boxed{\huge{\mathbb\purple{REFERR \:TO\: THE\:\: ATTACHMENT }}}}}}

Answer:

Attachments:
Similar questions