Math, asked by Bhandu68, 4 months ago

please solve it :-
 \cos(x )  \:  =   \:  \cos(60)  \:  \cos(30)  \:  +  \:  \sin(60)  \:  \sin(30)

Answers

Answered by thebrainlykapil
75

\large\underline{ \underline{ \sf \maltese{ \: Question:- }}}

\sf{ \cos(x )  =  \bigg(  \cos(60) \cos(30)   \:  +  \:  \sin(60) \sin(30)  \bigg)}

\red{\boxed{ \sf \blue{ Find \: cos(x)  \: ? }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

\qquad \quad {:} \longrightarrow \sf{\sf{  \cos(x ) \: = \: \cos(60) \: \cos(30) \: + \: \sin(60) \: \sin(30) }}

\quad {:} \longrightarrow \sf{\sf{   \sf{ \cos(x )  =  \bigg(   \frac{1}{2}    \:   \times  \frac{ \sqrt{3} }{2} +  \frac{ \sqrt{3} }{2}  \:  \times  \frac{1}{2}  \bigg)}}}

\qquad \quad {:}\longrightarrow\sf{ \cos(x)  \:  =  \:  \frac{ \sqrt{3} }{4}   \:  +  \:  \frac{ \sqrt{3} }{4}  }

\qquad \quad {:}\longrightarrow\sf{ \cos(x)  \:  =  \:  \frac{ \sqrt{3} }{2}   }

\qquad \quad {:}\longrightarrow\sf{ \cos(x)  \:  =  \: \cos(30)  }

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{x \: = \: 30°  }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{  \:  \cos(x) = \underline {\underline{ \frac{ \sqrt{3} }{2}  \:  =  \: 30° }}}\\\end{gathered}\end{gathered}

━━━━━━━━━━━━━━━━━━━━━━━━━

\red{\boxed{ \sf \orange{ More \: To \: Learn\: :- }}}

\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3} }{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }& 1 & \sqrt{3} & \rm Not \: De fined \\ \\ \rm cosec A & \rm Not \: De fined & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm Not \: De fined \\ \\ \rm cot A & \rm Not \: De fined & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0 \end{array}}}\end{gathered}\end{gathered}

Answered by ITZSCIENTIST
67

:⟶cos(x)=cos(60)cos(30)+sin(60)sin(30)

\quad {:} \longrightarrow \sf{\sf{ \sf{ \cos(x ) = \bigg( \frac{1}{2} \: \times \frac{ \sqrt{3} }{2} + \frac{ \sqrt{3} }{2} \: \times \frac{1}{2} \bigg)}}}:⟶cos(x)=(

2

1

×

2

3

+

2

3

×

2

1

)

\qquad \quad {:}\longrightarrow\sf{ \cos(x) \: = \: \frac{ \sqrt{3} }{4} \: + \: \frac{ \sqrt{3} }{4} }:⟶cos(x)=

4

3

+

4

3

\qquad \quad {:}\longrightarrow\sf{ \cos(x) \: = \: \frac{ \sqrt{3} }{2} }:⟶cos(x)=

2

3

\qquad \quad {:}\longrightarrow\sf{ \cos(x) \: = \: \cos(30) }:⟶cos(x)=cos(30)

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{x \: = \: 30° }}}:⟶

x=30°

━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{ \: \cos(x) = \underline {\underline{ \frac{ \sqrt{3} }{2} \: = \: 30° }}}\\\end{gathered}\end{gathered} \end{gathered}

∴cos(x)=

2

3

=30°

━━━━━━━━━━━━━━━━━━

Similar questions