Math, asked by Anonymous, 15 days ago

Please solve it!!
The function g is defined by \sf g(x)=q+\dfrac{P}{x}, \sf g^2(x)=g^{-1}(x). Prove that P+q²=0.

Don't spam please :)

Answers

Answered by mathdude500
13

\begin{gathered}\begin{gathered}\bf \: Given - \begin{cases} &\sf{g(x) = q + \dfrac{p}{x} } \\ &\sf{ {g}^{2}(x) =  {g}^{ - 1}(x)} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To \: prove - \begin{cases} &\sf{{q}^{2} + p = 0}  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

  \large \underline{\tt \:  \red{ According  \: to  \: statement }}

\tt \longmapsto\:g(x) = q + \dfrac{p}{x}

Now,

  • Let first evaluate inverse of g(x).

\tt \longmapsto\:let \: g(x) = y = q + \dfrac{p}{x}

\tt \longmapsto\:y - q = \dfrac{p}{x}

\rm :\implies\:x = \dfrac{p}{y - q}

\rm :\implies\:\:\boxed{ \green{ \bf \:  {g}^{ - 1}(x) = \dfrac{p}{x - q}}} -  - (1)

Now,

  • Let evaluate,

\tt \longmapsto\: {g}^{2} (x)

\tt \longmapsto\: = g(g(x))

\tt \longmapsto\: = g\bigg( q + \dfrac{p}{x} \bigg)

\tt \longmapsto\: = q + \dfrac{p}{q + \dfrac{p}{x} }

\tt \longmapsto\: = q + \dfrac{px}{xq + p}

\tt \longmapsto\: = \dfrac{pq +  x{q}^{2} + px }{qx + p}

\rm :\implies\:\:\boxed{ \green{ \bf \: {g}^{2}(x) = \dfrac{pq +  x{q}^{2} + px }{qx + p}   }}

Now,

  \large \underline{\tt \:  \red{ According  \: to  \: statement }}

\tt \longmapsto\: \blue{ {g}^{2}(x) =   {g}^{ - 1}(x) }

\tt \longmapsto\:\dfrac{pq +  x{q}^{2} + px }{qx + p} = \dfrac{p}{x - q}

\tt \longmapsto\:xpq +  {x}^{2} {q}^{2}  +  {px}^{2} -  {pq}^{2}  -  {xq}^{3}  - xpq = xpq +  {p}^{2}

\tt \longmapsto\: {x}^{2} {q}^{2}  +  {px}^{2}   -  {pq}^{2}  -  {xq}^{3}  - xpq -  {p}^{2}  = 0

\tt \longmapsto\: ({x}^{2} {q}^{2}  +  {px}^{2})   -  ({pq}^{2} +  {p}^{2})   -  ({xq}^{3}  +  xpq)   = 0

\tt \longmapsto\: {x}^{2}( {q}^{2} + p) -xq( {q}^{2} + p)  - p( {q}^{2} + p)   = 0

\tt \longmapsto\:( {q}^{2} + p)( {x}^{2} - xq - p) = 0

\rm :\implies\:\:\boxed{ \green{ \bf \: {q}^{2} + p = 0}}

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

Similar questions