Math, asked by gurroopkola123, 3 months ago

Please solve it the ques in in attachment​

Attachments:

Answers

Answered by TheEqUiSitE
25

{ \underline{ \bold{ \red{ \tt{ Rationalize  \:  \:  \: \: the  \:  \: \: denominator}}}}}

{ \huge{ \tt{  \frac{1}{ \sqrt{3}  -  \sqrt{2}  + 1}}} }

{ \rightarrow{ \green{ \tt{ \:  \:  \:  \frac{1}{ \sqrt{3}  -  \sqrt{2} + 1 }  \times  \frac{ \sqrt{3}  +  \sqrt{2} - 1 }{ \sqrt{3} +  \sqrt{2} - 1  } }}}}

{ \rightarrow{ \tt{ \green{  \frac{ \sqrt{3} +  \sqrt{2} + - 1  }{ \sqrt{3}. \sqrt{3}   +   \sqrt{3}. \sqrt{2}   -  \sqrt{3}.1  -  \sqrt{2}  . \sqrt{3}  -  \sqrt{2} . \sqrt{2}  +  \sqrt{2} .1   +  1.\sqrt{3}    +   1. \sqrt{2}     - 1.1}}}}}

{ \rightarrow{ \tt{ \green{ \frac{ \sqrt{3} +  \sqrt{2}  - 1 }{3 +  \sqrt{6} -  \sqrt{3} -  \sqrt{6}  - 2 +  \sqrt{2} +  \sqrt{3}  +  \sqrt{2}  - 1}}}}   }

{ \rightarrow{ \tt{ \green{ \frac{ \sqrt{3} +  \sqrt{2} - 1  }{ \sqrt{6}  -  \sqrt{6}  +  \sqrt{3}  -  \sqrt{3}  +  \sqrt{2} +  \sqrt{2} + 3 - 2 - 1}}}}  }

{ \rightarrow{ \tt{ \green{ \frac{ \sqrt{3} +  \sqrt{2}  - 1 }{2 \sqrt{2} } }}}}

{ \rightarrow{ \tt{ \green{ \frac{ \sqrt{3}  +  \sqrt{2} - 1 }{2 \sqrt{2} }  \times  \frac{2 \sqrt{2} }{2 \sqrt{2} } }}}}

{ \rightarrow{ \tt{ \green {\frac {2 \sqrt{6}  + 4 - 2 \sqrt{2} }{8}}}}}

{ \rightarrow{ \tt{ \green{ \frac{2( \sqrt{6}  -  \sqrt{2} - 4) }{8}}}}}

{ \rightarrow{ \huge{ \tt{ \green{ \frac{ \sqrt{6}  -  \sqrt{2}  - 4}{4} }}}}}

Similar questions