Math, asked by Nimo07, 2 months ago

please solve its as you can

Attachments:

Answers

Answered by mathdude500
24

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\dfrac{x {cosec}^{2}30 \degree \:   {sec}^{2} 45\degree }{8 {cos}^{2} 45\degree  {sin}^{2} 60\degree }  =  {tan}^{2}60\degree  -  {tan}^{2}30\degree

We know,

\rm :\longmapsto\:cosec30\degree  = 2

\rm :\longmapsto\:sec45\degree  =  \sqrt{2}

\rm :\longmapsto\:cos45\degree  =   \dfrac{1}{ \sqrt{2} }

\rm :\longmapsto\:sin60\degree  = \dfrac{ \sqrt{3} }{2}

\rm :\longmapsto\:tan60\degree  =  \sqrt{3}

\rm :\longmapsto\:tan30\degree  =   \dfrac{1}{ \sqrt{3} }

So, on substituting these values in above expression, we get

\rm :\longmapsto\:\dfrac{x {(2)}^{2}  {( \sqrt{2}) }^{2} }{8 \times  {\bigg(\dfrac{1}{ \sqrt{2} } \bigg) }^{2}  \times  {\bigg(\dfrac{ \sqrt{3} }{2} \bigg) }^{2} } =  {( \sqrt{3} )}^{2}  -  {\bigg(\dfrac{1}{ \sqrt{3} }  \bigg) }^{2}

\rm :\longmapsto\:\dfrac{x \times 4 \times 2}{8 \times \dfrac{1}{2}  \times \dfrac{3}{4} } = 3 - \dfrac{1}{3}

\rm :\longmapsto\:\dfrac{x }{ \dfrac{3}{8}} =  \dfrac{9 - 1}{3}

\rm :\longmapsto\:\dfrac{8x }{3} =  \dfrac{8}{3}

\bf\implies \:x = 1

Additional Information :-

\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\sf Trigonometry\: Table \\ \begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\boxed{\boxed{\begin{array}{ |c |c|c|c|c|c|} \bf\angle A & \bf{0}^{ \circ} & \bf{30}^{ \circ} & \bf{45}^{ \circ} & \bf{60}^{ \circ} & \bf{90}^{ \circ} \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3}}{2} &1 \\ \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\ \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }&1 & \sqrt{3} & \rm \infty \\ \\ \rm cosec A & \rm \infty & 2& \sqrt{2} & \dfrac{2}{ \sqrt{3} } &1 \\ \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }& \sqrt{2} & 2 & \rm \infty \\ \\ \rm cot A & \rm \infty & \sqrt{3} & 1 & \dfrac{1}{ \sqrt{3} } & 0\end{array}}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}

Similar questions