Math, asked by sadhika132, 11 months ago

please solve limits sum​

Attachments:

Answers

Answered by yousufSheikh
1

Step-by-step explanation:

Hope it helps

Mark as brainliest

Attachments:
Answered by tripathi64
0

Answer:

The solved limit sum is lim_{x\longrightarrow{0}}\frac{sin(a+x)+sin(a-x)-2sina}{xsinx}=-sina

Step-by-step explanation:

Given limit sum is lim_{x\overrightarrow{0}}\frac{sin(a+x)+sin(a-x)-2sina}{xsinx}

To solve the given limit sum :

Now taking sin(a+x)+sin(a-x)-2sina

=2sinacosa-2sina ( by using the formula sin(x+y)+sin(x-y)=2sinxcosy here x=a and y=x )

=2sina(cosx-1)

=-2sina(-cosx-(-1))

=-2sina(1-cosx)

Multiply and divide by conjugate we get

=\frac{-2sina(1-cosx)\times (1+cosx)}{1+cosx}

=\frac{-2sina(1^2-cos^2x)}{1+cosx}  ( by using the formula (a-)(a+b)=a^2-b^2 )

=\frac{-2sina(1-cos^2x)}{1+cosx}  

sin(a+x)+sin(a-x)-2sina=\frac{-2sinasin^2x}{1+cosx} ( by using the formula sin^2x=1-cos^2x )

Now taking lim_{x\longrightarrow{0}} on both sides an d divided by xsinx on both sides we get

lim_{x\longrightarrow{0}}\frac{sin(a+x)+sin(a-x)-2sina}{xsinx}=lim_{x\longrightarrow{0}}\frac{-2sinasin^2x}{(1+cosx)(xsinx)}

=lim_{x\longrightarrow{0}}\frac{-2sinasinx}{(1+cosx)(x)}

=lim_{x\longrightarrow{0}}\frac{-2sina}{(1+cosx)}\times lim_{x\longrightarrow{0}}\frac{sinx}x}

 ( here using lim_{x\longrightarrow{0}}\frac{sinx}{x}=1 )

=\frac{-2sina}{(1+1)} ( by cos0=1 )

=-\frac{2sina}{2}

=-sina

Therefore lim_{x\longrightarrow{0}}\frac{sin(a+x)+sin(a-x)-2sina}{xsinx}=-sina

Similar questions