Math, asked by barindergrover, 8 months ago

Please solve me the above question​

Attachments:

Answers

Answered by artistlover637
1

Answer:

1/5

follow me

...

Step-by-step explanation:

The value of \sec A-\tan AsecA−tanA is equal to \dfrac{1}{5}

5

1

.

Step-by-step explanation:

We have,

13\sin A =1213sinA=12

∴ \sin A =\dfrac{12}{13}sinA=

13

12

To find, \sec A-\tan AsecA−tanA = ?

∴ \sin A =\dfrac{12}{13}=\dfrac{p}{h}sinA=

13

12

=

h

p

Where p = perpendicular and h = hypotaneous

∴ Base, b = \sqrt{h^{2}-p^{2}}

h

2

−p

2

= \sqrt{13^{2}-12^{2}}=\sqrt{169-144}=\sqrt{25}

13

2

−12

2

=

169−144

=

25

= 5

∴ sec A=\dfrac{h}{b} =\dfrac{13}{5}secA=

b

h

=

5

13

and

\tan A=\dfrac{p}{b} =\dfrac{12}{5}tanA=

b

p

=

5

12

∴ \sec A-\tan AsecA−tanA = \dfrac{13}{5}-\dfrac{12}{5}

5

13

5

12

= \dfrac{13-12}{5}

5

13−12

= \dfrac{1}{5}

5

1

∴ The value of \sec A-\tan AsecA−tanA = \dfrac{1}{5}

5

1

Thus, the value of \sec A-\tan AsecA−tanA is equal to \dfrac{1}{5}

5

1

.

Answered by YOYOYO123456442
0

Answer:

1/4

Step-by-step explanation:

hope it helps you

....

Similar questions