Math, asked by anmalsingh19916, 9 months ago

please solve my maths problem​

Attachments:

Answers

Answered by FIREBIRD
4

Step-by-step explanation:

We Have :-

 \csc( a )  +  \cot(a)  = m

To Prove :-

 \dfrac{m^{2} - 1 }{m^{2}  +  1}  =  \cos(a)

Formulas Used :-

(a + b)^{2}  = a^{2}  + b^{2}  + 2ab \\  \\  \\  \csc^{2} (a)  -  \cot^{2} (a)  = 1

Solution :-

 \csc(a)  +  \cot(a)  = m \\  \\  \\ squaring \: both \: sides \\  \\  \\ (\csc(a)  +  \cot(a) )^{2}  = m^{2}  \\  \\  \\  \csc^{2} (a)  +  \cot^{2} (a)  + 2 \csc(a)  \cot(a)  = m^{2}  \\  \\  \\ now \: we \: have \\  \\  \\  \dfrac{m^{2}  - 1}{m^{2}  + 1}  \\  \\  \\ putting \: the \: value \: of \: m^{2}  \\  \\  \\  \dfrac{\csc^{2} (a)  +  \cot^{2} (a)  + 2 \csc(a)  \cot(a) - 1}{\csc^{2} (a)  +  \cot^{2} (a)  + 2 \csc(a)  \cot(a) + 1}  \\  \\  \\ \dfrac{\csc^{2} (a)  +  \cot^{2} (a)  + 2 \csc(a)  \cot(a) - (\csc^{2} (a)  -  \cot^{2} (a)) }{\csc^{2} (a)  +  \cot^{2} (a)  + 2 \csc(a)  \cot(a) + (\csc^{2} (a)  -  \cot^{2} (a))}  \\  \\  \\ \dfrac{\csc^{2} (a)  +  \cot^{2} (a)  + 2 \csc(a)  \cot(a) - \csc^{2} (a)   +  \cot^{2} (a) }{\csc^{2} (a)  +  \cot^{2} (a)  + 2 \csc(a)  \cot(a) + \csc^{2} (a)  -  \cot^{2} (a)} \\  \\  \\ \dfrac{ \cot^{2} (a)  + 2 \csc(a)  \cot(a)    +  \cot^{2} (a) }{\csc^{2} (a)    + 2 \csc(a)  \cot(a) + \csc^{2} (a)  } \\  \\  \\ \dfrac{ 2\cot^{2} (a)  + 2 \csc(a)  \cot(a)    }{2\csc^{2} (a)    + 2 \csc(a)  \cot(a)   } \\  \\  \\ \dfrac{ 2\cot(a)(  \csc(a)  +  \cot(a)   ) }{2\csc (a)  ( \csc(a)   + \cot(a))   } \\  \\  \\  \dfrac{ \cot(a) }{ \csc(a) }  \\  \\  \\  \dfrac{ \dfrac{ \cos(a) }{ \sin(a) } }{ \dfrac{1}{ \sin(a) } }  \\  \\  \\   \dfrac{ \cos(a) }{ \sin(a) }  \times  \dfrac{ \sin(a) }{1}  \\  \\  \\  \cos(a)

Similar questions