Math, asked by tusharberiya19, 3 days ago

PLEASE SOLVE MY QUESTION!!​

Attachments:

Answers

Answered by Mathkeeper
1

Step-by-step explanation:

We have,

 \sf{ I =  \int {x}^{ - 3}   \: dx } \\

 \sf{ \implies \: I =  \dfrac{ {x}^{ - 3 +  1} }{ - 3 + 1}   +  C } \\

 \sf{ \implies \: I =  \dfrac{ {x}^{ - 2} }{ - 2}   +  C } \\

 \sf{ \implies \: I =  \dfrac{1}{ - 2 {x}^{2} }   +  C } \\

 \sf{ \implies \: I =   - \dfrac{1}{ 2 {x}^{2} }   +  C } \\

Answered by TrustedAnswerer19
32

{\orange{ \boxed{ \boxed{ \begin{array}{cc} \bf \: \to \:  given \:  :   \\  \\ I \:  = \displaystyle \int \:  \rm \:   {x}^{ - 3} \: dx\\  \\  \underbrace{{\pink{ { \boxed{ \begin{array}{cc} \sf \: we \: know \: that \:  :  \\  \\ \sf \hookrightarrow \:  \displaystyle \int \:  \rm \:  {x}^{n}  \: dx =  \frac{ {x}^{n + 1} }{ n+ 1}  + c\end{array}}}}}}_{ \underbrace{ \sf \: apply \: this \: rule}_ { \downarrow}} \\  \\  \rm = \frac{ {x}^{ - 3 + 1} }{ - 3  + 1}   + c  \\  \\  \rm =  \frac{ {x}^{ - 2} }{ - 2} + c \\  \\  \rm =  -  \frac{ { {(x}^{ 2} })^{ - 1} }{  2} + c \\  \\  \rm =  -   \frac{ \frac{1}{ {x}^{2} } }{2}   + c \\  \\  \rm =  -  \frac{1}{ {x}^{2} }    \times  \frac{1}{2}  + c \\  \\  \rm =   - \frac{1}{2 {x}^{2} }  + c \end{array}}}}}

Similar questions