Math, asked by riji31, 10 months ago

please solve my question correctly and don't spam..... explanation must...​

Attachments:

Answers

Answered by Rajshuklakld
3

Solution:-To prove:-

 \frac{1}{1 +  {x}^{b - a} +  {x}^{c - a}  }  +  \frac{1}{1 +  {x}^{a - b} +  {x}^{c - b}  } +  \frac{1}{1 +  {x}^{a - c} +  {x}^{b - c}   }  = 1

Proof:-Take LHS

 \frac{1}{1 +  \frac{ {x}^{b} }{ {x}^{a}  } +  \frac{ {x}^{c} }{ {x}^{a} }   }  +  \frac{1}{1 +   \frac{ {x}^{a} }{ {x}^{b}  }  +  \frac{ {x}^{c} }{ {x}^{b} }  } +  \frac{1}{1 +  \frac{ {x}^{a} }{ {x}^{c} }  +  \frac{ {x}^{b} }{ {x}^{c} } }   \\ take \:  {x}^{a} \:  lcm \:from \: first \: term \:   \:  \:  \: {x}^{b} in \: second \: term \:  \: and \:  {x}^{c}  \: im \:  \\ third \: term \\  \frac{1}{ \frac{ {x}^{a} +  {x}^{b}  +  {x}^{c}  }{ {x}^{a} } }  +  \frac{1}{ \frac{ {x}^{b} +  {x}^{a} +  {x}^{c}   }{ {x}^{b} } }  +  \frac{1}{ \frac{ {x}^{c} +  {x}^{a}  +  {x}^{b}  }{ {x}^{c} }  } \\  \frac{ {x}^{a} }{ {x}^{a} +  {x}^{b} +  {x}^{c} +   }   +   \frac{ {x}^{b} }{ {x}^{a} +  {x}^{b}  +  {x}^{c}  }   +  \frac{ {x}^{c} }{ {x}^{a} +  {x}^{b}   +  {x}^{c} } \\ taking \:  {x}^{a}  +  {x}^{b}  +  {x}^{c}  \: as \: lcm \: we \: get \\  \frac{ {x}^{a} +  {x}^{b}   +  {x}^{c} }{ {x}^{a}  +  {x}^{b}  +  {x}^{c} }  = 1

this is equal to RHS

Hence proved

{hope it helps you}

Similar questions