Math, asked by riji31, 9 months ago

please solve my question correctly correctly correctly ...
and don't spam... explanation must...​

Attachments:

Answers

Answered by Anonymous
42

Question :

If 3sinθ+4cosθ= 5

so prove that

sinθ=\dfrac{3}{5}

Formula's Used :

1) sin(A+B)=sinAcosB+sinBcosA

2) sin(A-B) =sinAcosB-sinBcosA

3) cos(A-B)=cosAcosB+sinAsinB

4)cos(A+B)=cosAcosB-sinAsinB

Solution :

Given : 3sinθ+4cosθ= 5

we have to Prove that sinθ=\dfrac{3}{5}

_____________________________

3sinθ+4cosθ= 5

Divide both sides by 5

 \implies \frac{3}{5} \sin( \theta) +  \frac{4}{5} \cos( \theta)  = 1

Now let sinA=\dfrac{3}{5}

⇒cosA=√1-sin²A= \dfrac{4 }{5}

 \implies \:  \sin(A) \sin( \theta)  +  \cos(A) \cos( \theta)  = 1

 \implies \:  \cos(A -  \theta)  = 1

we know that cos 0° = 1

  \implies \: A-  \theta = 0

  \implies\theta = A

Now take sin on both sides

 \implies \sin( \theta)  =  \sin(A)

 \implies \: \sin( \theta)  =  \frac{3}{5}

\huge{\bold{ Hence\: Proved}}

Similar questions