Math, asked by riji31, 10 months ago

please solve my question correctly correctly correctly....don't spam......explanation must...​

Attachments:

Answers

Answered by TheLifeRacer
10

Solution :-

From given :-

tan²¢ = 1-e²

e²= 1-tan²¢ ___(1)

Now , we have to prove -sec¢ + tan³¢ cosec¢ ,= (2-e²)^³/2

Let's play with RHS .

=>(2-e²)^3/2

=>{2-{1-tan²¢)} ^³/2 ____from (1)

=> (1+tan²¢ ) ^3/2

=> (sec²¢)^3/2

=> sec³¢

Now let's play with LHS .

sec¢ + tan³¢ cosec¢

=> 1/cos¢ + sin³¢/cos³¢ *1/sin¢

=> 1/cos¢ + sin²¢ /cos³¢

=> cos²¢ + sin²¢ /cos³¢ (taking LCM}

=> 1/cos³¢ = sec³¢

LHS = RHS PROVED

________________________

Hope it's helpful

Answered by BrainlyConqueror0901
13

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  {tan}^{2}  \theta = 1 -  {e}^{2}  \\  \\ \red{\underline \bold{To \: Find :}}  \\  \tt:  \implies sec \theta +  {tan}^{3}  \theta \: cosec \theta =  {(2 -  {e}^{2} )}^{ \frac{3}{2} }

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  {tan}^{2}  \theta = 1 -  {e}^{2}  \\  \\ \tt \circ  \:  {tan}^{2}   \theta=  {sec}^{2}   \theta  - 1 \\  \\  \tt:  \implies    {sec}^{2}  \theta  - 1 = 1 -  {e}^{2}  \\  \\ \tt:  \implies    {sec}^{2}   = 2 -  {e}^{2}  -  -  -  -  - (1) \\  \\  \bold{To \:Prove: } \\  \tt:  \implies sec \theta +  {tan}^{3}  \theta  \: cosec \theta =  ({1 -  {e}^{2} })^{ \frac{3}{2} }  \\  \\  \bold{Proof : } \\  \tt:  \implies sec \theta +  {tan}^{3} \theta \: cosec \theta \\ \\ \tt\circ\:tan\theta=\frac{sin\theta}{cos\theta}\\\\ \tt\circ\:cosec\theta=\frac{1}{sin\theta}\\ \\ \tt:  \implies sec \theta +  \frac{sin^{3} \theta}{ {cos}^{3} \theta }  \times  \frac{1}{sin \theta}  \\  \\ \tt:  \implies sec \theta  +  \frac{ {sin}^{2} \theta }{ {cos}^{3} \theta }

\tt:  \implies  \frac{1}{cos \theta}  +  \frac{ {sin}^{2}  \theta}{ {cos}^{3}  \theta}\\  \\  \tt:  \implies  \frac{ {cos}^{2}  \theta +  {sin}^{2}  \theta}{ {cos}^{3}  \theta}  \\\\ \tt\circ\:sin^{2}\theta+cos^{2}\theta=1\\\\ \tt:  \implies  \frac{1}{ {cos}^{3} \theta  }  \\ \\ \tt\circ\:\frac{1}{cos\theta}=sec\theta \\\\  \tt:  \implies  {sec}^{3}  \theta \\  \\ \tt:  \implies  sec \theta \times  {sec}^{2}  \theta \\  \\ \tt:  \implies  \sqrt{2 -  {e}^{2} }  \times  ({2 - e}^{2} ) \\  \\  \tt:  \implies ( {2-  {e}^{2} })^{ \frac{1}{2} }  \times  {(2 - e}^{2} ) \\ \\ \text{Bases\:are\:same\:so\:power\:can\:be\:add} \\  \green{\tt:  \implies  {(2-  {e}^{2}) }^{ \frac{3}{2}  } } \\  \\  \:  \:   \:  \:  \:  \:  \:  \:  \:  \huge\green{\bold{proved }}


Anonymous: Perfect Answer. ⚡
BrainlyConqueror0901: thnx a lot : )
Similar questions