Math, asked by riji31, 11 months ago

please solve my question correctly correctly correctly....don't spam.....explanation must...​

Attachments:

Answers

Answered by TheLifeRacer
7

Hi !

Solution :-

From given :- tan⁴¢ + tan²¢. = 1

= tan⁴¢ + tan²¢ = tan²¢ ( tan²¢ + 1)

We know. , ( 1+tan²¢ ) = sec²¢

=> tan²¢ ( sec²¢) = 1

=> (sec²¢ - 1) sec²¢ = 1

=> sec⁴¢ - sec²¢ = 1

=> 1/cos⁴¢ - 1/cos²¢ = 1

=> 1- cos²¢ / cos⁴¢ = 1

=> sin²¢ /cos⁴¢ = 1

=> sin²¢ = cos⁴¢ .....______ __ (1)

Now , we have to prove .

Cos⁴ ¢ + cos²¢ = 1

cos⁴¢ = 1-cos²¢

cos⁴¢ = sin²¢ .

Since , from equation (1) we have already proved from given that , sin²¢ = cos⁴¢

°•° cos⁴¢ + cos²¢ =1

from LHS

= sin²¢ + cos²¢ = 1 ,{From equation (1/

= 1 proved

LHS = RHS

______________________________

Hope it's helpful

Answered by BrainlyConqueror0901
7

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given : }} \\  \tt:  \implies  {tan}^{4} \theta  +  {tan}^{2}  \theta = 1 \\  \\ \red{\underline \bold{To \: Prove: }}  \\  \tt:  \implies  {cos}^{4}  \theta +  {cos}^{2}  \theta =1

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  {tan}^{4}  \theta +  {tan}^{2}  \theta = 1 \\  \\  \tt:  \implies  {tan}^{2}  \theta( {tan}^{2}  \theta + 1) = 1 \\  \\  \tt \circ \: tan^{2} \theta = {sec}^{2} \theta-1

 \tt:  \implies  ({sec}^{2}  \theta - 1)sec^{2}  \theta = 1 \\  \\  \tt:  \implies  {sec}^{4}  \theta -  {sec}^{2} \theta = 1 \\  \\  \tt:   \implies  \frac{1}{ {cos}^{4}  \theta}  -   \frac{1}{ {cos}^{2} \theta}  = 1 \\  \\  \tt:  \implies  \frac{1 -  {cos}^{2} \theta }{ {cos}^{4} \theta }  = 1 \\  \\  \tt \circ  {sin}^{2}  \theta = 1 -  {cos}^{2} \theta \\ \\    \tt:  \implies   \frac{ {sin}^{2} \theta }{ {cos}^{4}   \theta} = 1 \\  \\  \tt:  \implies  {sin}^{2}  \theta =  {cos}^{4}  \theta -  -  -  -  - (1) \\  \\  \bold{To \: Prove : } \\  \tt:  \implies  {cos}^{4}   + {cos}^{2}  \theta = 1 \\  \\  \bold{Proof : } \\  \tt:  \implies   {cos}^{4} \theta +  {cos}^{2}   \theta \\  \\   \text{Putting \: value \: of \:  {cos}}^{2} \theta  \\ \tt:  \implies  {sin}^{2}  \theta +  {cos}^{2}  \theta \\  \\  \tt \circ \:  {sin}^{2}  \theta +  {cos}^{2}  \theta = 1 \\  \\  \tt:  \implies 1 \\\\    \:   \:  \:  \:  \: \huge\green{\bold{Proved}}

Similar questions