Math, asked by riji31, 10 months ago

please solve my question correcty.......don't spam......and explanation must....​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

To prove: cot(2θ) + tan(θ)=cosec(2θ)

Proof:

Let us put θ=α in the given question.

so,

 \cot(2 \alpha ) +  \tan( \alpha )  =  \frac{1}{ \tan(2 \alpha ) }   +  \tan( \alpha )

 =  \frac{1}{ \frac{2 \tan( \alpha ) }{1 -  \tan^{2} ( \alpha ) } }  +  \tan( \alpha )

 =  \frac{1 -  \tan^{2} ( \alpha ) }{2 \tan( \alpha ) }  +  \tan( \alpha )

Taking lcm,

 \frac{1 -  \tan^{2} ( \alpha )  + 2 \tan^{2} ( \alpha ) }{2 \tan( \alpha ) }

 =  \frac{1 +  \tan^{2} ( \alpha ) }{2 \tan( \alpha ) }

 =  \frac{1}{ \frac{2 \tan( \alpha ) }{1 +  \tan^{2} ( \alpha ) } }

 =  \frac{1}{ \sin(2 \alpha ) }

 =  \csc(2 \alpha )

So, cot(2θ) + tan(θ)= cosec(2θ), (putting back θ=α)

Here formula used are .......

tan(2θ)={2tan(θ)}/{1-tan²(θ)} and

sin(2θ)={2tan(θ)}/{1+tan²(θ)}

Answered by Raji0926
0

Answer:

cos(a-b)=cosa.cosb+sina.sinb

tana =sina/cosa

cota = cosa/sina

cot2a + tana

=(cos2a/sin2a)+(sina/ cosa)

take LCM

=(cos2a.cosa+sinasin2a)/sin2a.cosa

by formula,

=cosa/sin2a.cosa

=1/sin2a

ie.,cosec2a . (: a instead of theta)

Similar questions