Math, asked by omjee06, 10 months ago

please solve my question
I will make you brainlist
please help​

Attachments:

Answers

Answered by rakeshhulsure53
0

Answer:

Good question bro............

Answered by Anonymous
3

 \sqrt{(1 -  \frac{1}{3})(1 -  \frac{1}{4} )(1 -  \frac{1}{5}  )...(1 -  \frac{1}{16}) }  \\  \\ let \:  \:  \: z = (1 -  \frac{1}{3} )(1 -  \frac{1}{4} )(1 -  \frac{1}{5} )...(1 -  \frac{1}{16} ) \\  \\ take \:  \:  log_{2} \:  \: on \:  \: both \:  \: sides \\  \\  log_{2}(z)  =  log_{2}((1 -  \frac{1}{3})(1 -  \frac{1}{4} )(1 -  \frac{1}{5} )...(1 -  \frac{1}{16)}  )  \\  \\  log_{2}(z)  =  log_{2}( \frac{2}{3} )  +  log_{2}( \frac{3}{4} )  +  log_{2}( \frac{4}{5} )  + ... +  log_{2}( \frac{15}{16} )  \\ becoz \:  \:  log(mn)  =  log(m)  +  log(n)  \\  \\  log_{2}(z)  =  log_{2}(2)  +  log_{2}(3)  +  log_{2}(4)  + ... +  log_{2}(15)  \\  - ( log_{2}(3)  +  log_{2}(4)  +  log_{2}(5)  + ... +  log_{2}(16) ) \\  \\ becoz \:  \:  \:  log( \frac{m}{n} )  =  log(m)  -  log(n)  \\  \\  log_{2}(z)  =  log_{2}(2)  -  log_{2}(16)  \\  \\  log_{2}(z)  =  log_{2}( \frac{2}{16} )  \\  \\  log_{2}(z)  =  log_{2}(2 {}^{ - 3} )  \\  \\  log_{2}(z)  =  - 3 log_{2}(2)  \\  \\  log_{2}(z)  =  - 3 \\  \\ z = 2 {}^{ - 3}  \\  \\  \\ now \:  \:  \:  \sqrt[3]{z}  =  \sqrt[3]{2 {}^{ - 3} }  = (2) {}^{ -  \frac{ - 3}{3} }  = 2 {}^{ - 1}  =  \frac{1}{2}

Similar questions