Math, asked by Anonymous, 4 months ago

please solve no spamming ​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 i = \int \sin( log( x ) ) dx \\

 i=  \int \sin( log(x) ) .1dx \\

i =  \sin( log(x) )  \int1.dx -  \int( \frac{d}{dx} ( \sin( log(x) ) ) \int1.dx)dx \\

i = x \sin( log(x) )  -  \int \frac{ \cos( log(x) ) }{x} .xdx \\

 \implies \: i = x \sin( log(x) )  - \int \cos( log(x) ) dx \\

 \implies \: i  =  x\sin( log(x) )  -  \cos( log(x) )  \int1.dx +  \int( \frac{d}{dx} ( \cos( log(x) ))  \int1.dx)dx \\

 \implies \: i  = x \sin( log(x) )  - x \cos( log(x) )  -  \int \frac{ \sin( log(x) ) }{x} .xdx \\

 \implies \: i = x \sin( log( x ) ) - x \cos( log(x) )   -  \int \sin( log(x) ) dx \\

 \implies \: i = x \sin( log(x) )  - x \cos( log(x) )  - i \\

 \implies2i = x \sin( log(x) )  - x \cos( log(x) )  \\

 \implies \: i =  \frac{x}{2} ( \sin( log( x ) )  -  \cos( log(x) ) \\

Similar questions