Math, asked by Mousumi5879, 19 days ago

please solve
No Spams​

Attachments:

Answers

Answered by misscutie94
5

Answer:

Solution :-

Proof :-

(1) Let the three medians AD, BE and CF of ∆ABC intersect at the point G.

That is G is the centroid of ∆ABC.

∴ AG : GD = BG : GE = CG : GF = 2 : 1

Now, in ∆BGC, BG + CG > BC

in ∆AGC, AG + CG > CA

in ∆AGB, AG + BG > AB

So adding together, 2(AG + BG + CG) > AB + BC + CA

or, 2(2/3AD + 2/3BE + 2/3CF) > AB + BC + CA

or, 4/3(AD + BE + CF) > AB + BC + CA

or, 4(AD + BE + CF) > 3(AB + BC + CA)

4(AD + BE + CF) > 3(AB + BC + CA) (Proved).

(2) In ∆ABD, AB + BD > AD

In ∆BCE, BC + CE > BE

In ∆CAF, CA + AF > CF

So adding, (AD + BC + CA) + (BD + CE + AF) > (AD + BE + CF)

or, (AB + BC + CA) + (1/2BC + 1/2CA + 1/2AB) > AD + BE + CF

or, 3/2(AB + BC + CA) > AD + BE + CF

or, 3(AB + BC + CA) > 2(AD + BE + CF)

3(AB + BC + CA) > 2(AD + BE + CF) (Proved).

Attachments:
Answered by mathdude500
5

\large\underline{\sf{Solution-1}}

Given that AD, BE and CF be the medians of triangle ABC intersects BC, AC and AB at D, E and F respectively.

Let assume that medians AD, BE, CF intersects each other at G.

We know, Centroid of a triangle divides the medians in the ratio 2 : 1 from the vertex.

\rm\implies \:AG : GD = BG : GE = CG : GF = 2 : 1 \\

It further implies

\rm\implies \:AG =  \frac{2}{3}  AD \\

\rm\implies \:BG  =  \frac{2}{3}BE \\

\rm\implies \:CG  =  \frac{2}{3}CF\\

Now, Consider

In triangle AGB

We know that sum of any two sides of a triangle is greater than third side.

\rm \: AG + GB > AB

On substituting the values of AG and BG from above, we get

\rm \: \dfrac{2}{3}AD  + \dfrac{2}{3}BE > AB

\rm\implies \:\rm \: 2AD  + 2BE > 3AB -  -  - (1) \\

Similarly,

\rm\implies \:2AD + 2CF > 3AC  -  -  - (2) \\

Similarly,

\rm\implies \:2BE + 2CF > 3BC -  -  - (3) \\

On adding equation (1), (2) and (3), we get

\rm\implies \:4AD + 4BE + 4CF > 3AC + 3AB + 3BC

\rm\implies \:4(AD + BE + CF) > 3(AB + BC + CA) \\

\color{green}\large\underline{\sf{Solution-2}}

As AD is median. So, it bisects BC.

\rm\implies \:BD = DC =  \frac{1}{2} \: BC \\

Now, In triangle ABD

We know, sum of any two sides of a triangle is greater than third side.

\rm \: AB + BD > AD \\

On substituting the value of BD from above, we get

\rm \: AB +  \frac{1}{2}BC  > AD \\

\rm\implies \: \: 2AB + BC  > 2AD -  -  - (1) \\

Similarly,

\rm\implies \:2BC + AC > 2BE -  -  - (2) \\

Similarly,

\rm\implies \:2AC + AB > 2CF -  -  - (3) \\

So, on adding equation (1), (2) and (3), we get

\rm \: 3AB + 3BC + 3AC > 2AD + 2BE + 2CF \\

\rm\implies \: 3(AB + BC + AC) > 2(AD + BE + CF) \\

Hence, Proved

Attachments:
Similar questions