Math, asked by Unknown1000, 1 year ago

Please solve q 10 please

Attachments:

Answers

Answered by gujjarankit
12

Answer:

hey mate here is ur answer hope u find it helpful

Attachments:

Unknown1000: Thanks for helping
gujjarankit: your welcome
gujjarankit: kindly follow me for any maths related queries a
Answered by Anonymous
35

☞ Show that x³ + \dfrac{1}{ {x}^{3} } = 52

x = 2 + √3 ______[GIVEN]

Solution:

=> x = 2 + √3

=> \dfrac{1}{x} = \dfrac{1}{2 \:  +  \:  \sqrt{3} }

• Rationalize

=> \dfrac{1}{x} = \dfrac{1}{2 \:  +  \:  \sqrt{3} } × \dfrac{2 \:  -  \:  \sqrt{3} }{2 \:   -   \:  \sqrt{3} }

=> \dfrac{1}{x} = \dfrac{2 \:  -  \:  \sqrt{3} }{( {2}^{2})  \:  -  \:  { (\sqrt{3} )}^{2} }

=> \dfrac{1}{x} = \dfrac{2 \:  -  \:  \sqrt{3} }{4 \:  -   \: 3}

=> \dfrac{1}{x} = \dfrac{2 \:  -  \:  \sqrt{3} }{1} _______(eq 1)

___________________________

To show x³ + \dfrac{1}{ {x}^{3} } = 52.

Let us find before x + \dfrac{1}{x}

We know that x = 2 + √3 [GIVEN]

and \dfrac{1}{x} = \dfrac{2 \:  -  \:  \sqrt{3} }{1} [FROM (eq 1)]

=> x + \dfrac{1}{x} = 2 + √3 + 2 - √3

=> x + \dfrac{1}{x} = 4 ________(eq 2)

• Take cube on both sides.

=> (x  \:  +  \: { \dfrac{1}{x} )}^{3} = (4)³

=> (x)³ + \dfrac{1}{ {x}^{3} } + 3(x + \dfrac{1}{x}) = 64

=> (x)³ + \dfrac{1}{ {x}^{3} } + 3 × 4 = 64 [From (eq2)]

=> (x)³ + \dfrac{1}{ {x}^{3} } + 12 = 64

=> (x)³ + \dfrac{1}{ {x}^{3} } = 64 - 12

_____________________________

(x)³ + \dfrac{1}{ {x}^{3} } = 52

____________[HENCE PROVED]


ShreyaSingh31: Perfect ! :)
Anonymous: thank you @Shreya ☺
Unknown1000: Thanks
Anonymous: Welcome ☺
Similar questions