Please solve Q. 4, 5, 7, and 11 given in the picture.
Ans.-
4. 1848cm^2
5. 27309+1/3 cm^3
7. 1257+ 1/7 cm^2
11. 101+ 2/21 cm^3
Attachments:
Answers
Answered by
4
Q 4.
Radii of spheres = R1 and R2 = 7 cm
Volumes of spheres
V1 = 4π/3 *R1³, V2 = 4π/3 * 7³ cm³
Given V1 - V2 = 10,061 1/3 cm³ = 30184/3 cm³
So V1 = 30184/3 + 4π*7³ /3 cm³ = 34496/3 cm^3
R1³ = 34496/3 * 3/4π = 2744 cm^3
R1 = 14 cm
================
Q5 .
Surface areas : 4 π 21² cm² and 4 π R2²
Difference: 4 π (21² - R2²) = 3,080 cm² given
21² - R2² = 3080 * 7/88
R2² = 195.76
R2 = 14 cm nearly
Difference in volumes: 4 π /3 * (21³ - 14³) = 81928/3 cm³
= 27309 1/3 cm³
===========
Q7.
R cm = outer radius of shell.
Inner diameter = 16 cm . inner radius = 8 cm.
Volume of the shell = 4π/3 * [ R³ - 8³] cm³ Outer volume minus inner volume
given 4π/3 * [ R³ - 8³ ] = 2,044 20/21 = (2044*21+20)/21 cm³
R^3 - 8³ = 488
So R = 10 cm
Outer surface area = 4 π R² = 8800/7 cm²
=========
Q11.
Quantity of metal to make the cup = volume of the material.
= volume of outer hemisphere - volume of inner hemisphere.
Capacity of the cup = volume of inner hemisphere = 89 5/6 cm^3 = 539/6 cm^3
Inner radius = R1
volume of hemisphere = 2π/3 R1³ = 539/6
R1 = 3.50 cm
Given thickness of the cup = 1 cm
Outer radius of the cup = R2 = 3.50 + 1 = 4.50 cm
Outer volume = 2π/3 * R2³ = 190.92 cm^3
Difference of the two volumes= 101.09 cm³
.... calculate in whole numbers and fractions instead of decimals.
Radii of spheres = R1 and R2 = 7 cm
Volumes of spheres
V1 = 4π/3 *R1³, V2 = 4π/3 * 7³ cm³
Given V1 - V2 = 10,061 1/3 cm³ = 30184/3 cm³
So V1 = 30184/3 + 4π*7³ /3 cm³ = 34496/3 cm^3
R1³ = 34496/3 * 3/4π = 2744 cm^3
R1 = 14 cm
================
Q5 .
Surface areas : 4 π 21² cm² and 4 π R2²
Difference: 4 π (21² - R2²) = 3,080 cm² given
21² - R2² = 3080 * 7/88
R2² = 195.76
R2 = 14 cm nearly
Difference in volumes: 4 π /3 * (21³ - 14³) = 81928/3 cm³
= 27309 1/3 cm³
===========
Q7.
R cm = outer radius of shell.
Inner diameter = 16 cm . inner radius = 8 cm.
Volume of the shell = 4π/3 * [ R³ - 8³] cm³ Outer volume minus inner volume
given 4π/3 * [ R³ - 8³ ] = 2,044 20/21 = (2044*21+20)/21 cm³
R^3 - 8³ = 488
So R = 10 cm
Outer surface area = 4 π R² = 8800/7 cm²
=========
Q11.
Quantity of metal to make the cup = volume of the material.
= volume of outer hemisphere - volume of inner hemisphere.
Capacity of the cup = volume of inner hemisphere = 89 5/6 cm^3 = 539/6 cm^3
Inner radius = R1
volume of hemisphere = 2π/3 R1³ = 539/6
R1 = 3.50 cm
Given thickness of the cup = 1 cm
Outer radius of the cup = R2 = 3.50 + 1 = 4.50 cm
Outer volume = 2π/3 * R2³ = 190.92 cm^3
Difference of the two volumes= 101.09 cm³
.... calculate in whole numbers and fractions instead of decimals.
ameyashrivastav:
Q 11?
Similar questions