Math, asked by VijayaLaxmiMehra1, 1 year ago

please solve ques 4 in the attachment

Attachments:

Anonymous: know the answers ?
Anonymous: 7 and -5 ?
VijayaLaxmiMehra1: yes it's correct

Answers

Answered by Anonymous
9

Comparing the polynomial

Given :

Polynomial = x⁴ - 6 x³ - 26 x² + 138 x - 35

Comparing with a x⁴ + b x³ + c x² + d x + e x , we get :

a = 1

b = -6

c = - 26

d = 138

e = - 35

Calculating the roots

Given :

2 roots are 2 + √3 and 2 - √3

Let other zeroes be p and q

Sum of roots

We know that sum of roots = - b / a

                                             = - ( - 6 ) / 1

                                             = 6

So : p + q + 2 + √3 + 2 - √3 = 6

==> p + q + 4 = 6

==> p + q = 6 - 4

==> p + q = 2 ...........................(1)

Product of roots

We know that product of roots = e / a

[ for even degree [ here 4 ] take last term / first term

for odd take ( - last term / first term ) ]

So : p q ( 2 + √3 )( 2 - √3 ) = e/a

==> p q ( 2² - 3 ) = - 35 [ using ( a + b )( a - b ) = a² - b² ]

==> p q ( 4 - 3 ) = 35

==> p q = 35

==> p = 35/q .......................(2)

Putting this in (1) we get :

35/q + q = 2

==> 35 + q² = 2 q [ Multiplying both sides by q ]

==> q² - 2 q + 35 = 0

==> q² - 7 q + 5 q + 35 = 0

==> q ( q - 7 ) + 5 ( q - 7 ) = 0

==> ( q - 7 )( q + 5 ) = 0

Either

q - 7 = 0

==> q = 7 or ,

q + 5 = 0

==> q = - 5

When q = 7 , p + q = 2

==> p + 7 = 2

==> p = 2 - 7

==> p = -5

Same numbers will come when q = - 5 :

The zeroes are -5 and 7 .

Hope it helps :-)

______________________________________________________________________


siddhartharao77: Nice Explanation!
Anonymous: thanks :)
Answered by siddhartharao77
3

Answer:

-5,7

Step-by-step explanation:

Given, polynomial is p(x) = x⁴ - 6x³ - 26x² + 138x - 35.

Let x = 2 ±√3 are the zeroes of p(x).

∴ x - (2 ± √3) are the factors of p(x)

⇒ {x - (2 + √3)}{x - (2 - √3)}

⇒ {(x - 2) - √3)}{(x - 2) + √3)}

⇒ (x - 2)² - (√3)²

⇒ x² + 4 - 4x - 3

⇒ x² - 4x + 1.


∴ Now, Dividing p(x) by x² - 4x + 1, we get

x² - 4x + 1) x⁴ - 6x³ - 26x² + 138x - 35(x² - 2x - 35

                 x⁴ - 4x³ + x²

                 -------------------------------------

                       -2x³ - 27x² + 138x

                       -2x³ +  8x²  - 2x

                --------------------------------------

                                -35x² + 140x - 35

                                -35x² + 140x - 35

                --------------------------------------

                                                  0


Now,

we find zeroes of x² -  2x - 35

⇒ x² - 7x + 5x - 35 = 0

⇒ x(x - 7) + 5(x - 7) = 0

⇒ (x + 5)(x - 7) = 0

⇒ x = -5,7.


Therefore, the other zeroes are -5,7.


Hope it helps!


Anonymous: easier method ^_^
siddhartharao77: Thanks :-)
sowmiya35: thanks siddharth
Similar questions