Math, asked by pratyush4211, 1 year ago

Please solve question 26 and 27​

Attachments:

Answers

Answered by shadowsabers03
10

\begin{aligned}26.\ \ &\log_{4}\sqrt[3]{8^{\displaystyle\small\text{$3+\dfrac{1}{3}\log_2x$}}}\ =\ 4\\ \\ \Longrightarrow\ \ &\sqrt[3]{8^{\diisplaystyle\small\text{$3+\dfrac{1}{3}\log_2x$}}}\ =\ 4^4\\ \\ \Longrightarrow\ \ &8^{\displaystyle\small\text{$3+\dfrac{1}{3}\log_2x$}}\ =\ \left(4^4\right)^3\ =\ \left(\left(2^2\right)^4\right)^3\ =\ \left(\left(2^3\right)^4\right)^2\ =\ 8^8\end{aligned}

\begin{aligned}\Longrightarrow\ \ &3+\dfrac{1}{3}\log_2x\ =\ 8\\ \\ \Longrightarrow\ \ &\dfrac{1}{3}\log_2x=8-3=5\\ \\ \Longrightarrow\ \ &\log_2x=5\times 3=15\\ \\ \Longrightarrow\ \ &\mathbf{x=2^{15}=32768}\end{aligned}

\cline{1-}

\begin{aligned}27.\ \ &\log_3\left(1+\dfrac{1}{3}\right)+\log_3\left(1+\dfrac{1}{4}\right)+\log_3\left(1+\dfrac{1}{5}\right)+...+\log_3\left(1+\dfrac{1}{80}\right)\\ \\ \Longrightarrow\ \ &\log_3\left(\dfrac{4}{3}\right)+\log_3\left(\dfrac{5}{4}\right)+\log_3\left(\dfrac{6}{5}\right)+...+\log_3\left(\dfrac{81}{80}\right)\\ \\ \Longrightarrow\ \ &\log_3\left(\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot\dfrac{6}{5}\cdot...\cdot\dfrac{80}{79}\cdot\dfrac{81}{80}\right)\end{aligned}

\Longrightarrow\ \ \log_3\left(\dfrac{81}{3}\right)\\ \\ \\ \Longrightarrow\ \ \log_327\ \ \Longrightarrow\ \ \log_3\left(3^3\right)\ \ \Longrightarrow\ \ \mathbf{3}

Answered by vanshika3165
0

Answer:

hyy

why you FOLLOW me????

Similar questions