Math, asked by lalijamewar, 1 year ago

please solve question no.2

Attachments:

Answers

Answered by BEJOICE
1

(i) \:  \: x +  {x}^{2}  = 30 \\  {x}^{2}  + x - 30 = 0
(ii) \:  \: y(y - 3) = 42 \\  {y}^{2}  - 3y - 42 = 0
(iii) \:  \: x +  \frac{1}{x}  =  \frac{37}{6}  \\   \frac{ {x}^{2}  + 1}{x}  =  \frac{37}{6}  \\ 6 {x}^{2}  - 37x + 6 = 0
(iv) \:  \: let \: digit \: at \: unit \: place \: be \: x \\ and \: digit \: at \: tens \: place \: be \: y \\ given \:  \: y =  {x}^{2}  + 5  -  -  - (1)\\ also \:  \: 10y + x = 61 -  -  - (2) \\ substituting \:  \: y \: in \:  \: (1) \: to \: (2) \\ 10( {x}^{2}  + 5) + x = 61 \\ 10 {x}^{2}  + x - 11 = 0
(v) \:  \: length \: is \:  \: x \\ breadth \: is \:  \: x  - 3\\ area \: x( x - 3) = 70 \\  {x}^{2}   -  3x - 70 = 0

Similar questions