Math, asked by Anonymous, 11 months ago

please solve question no....58. plz give solution detail ।।।।spams will be reported to brainly​

Attachments:

Answers

Answered by MIRZAKIR01
9

let \:  \:  \:  \: a {}^{ \frac{1}{a} }  = b {}^{ \frac{1}{b} }  = c {}^{ \frac{1}{c} }  = k \\  \\ a = k {}^{a}  \:  \:  \: b = k {}^{b}  \:  \:  \:  \: and \:  \:  \:  \: c = k {}^{c}  \\  \\  \\ a {}^{bc}  + b {}^{ac}  + c {}^{ab}  = 729  \:  \:  \:  \:  \: given \\  \\  \\ k {}^{abc}  + k {}^{abc}  + k{}^{abc}  = 729 \\  \\  3k {}^{abc}  = 729 \\  \\ k {}^{abc}  =  \frac{729}{3}  \\  \\ k {}^{abc}  = 243 \\  \\ k =  \sqrt[abc]{243}  \\  \\ as \:  \:  \: we \:  \:  \: already \:  \:  \: know \:  \:  \:  \: k = a {}^{ \frac{1}{a} }  \\  \\ a {}^{ \frac{1}{a} }  =  \sqrt[abc]{243}

Answered by Anonymous
30

\huge\underline\frak{Correct\:Question :}

If \sf A^\frac{1}{A}=B^\frac{1}{B}=C^\frac{1}{C}, \sf A^{BC}\times B^{AC}\times C^{AB}=729. Which of the following equals \sf A^\frac{1}{A}

\huge\underline\frak{Answer :}

\bullet\:\:\sf{A^\frac{1}{A}=B^\frac{1}{B}=C^\frac{1}{C}}\\\bullet\:\:\sf{A^{BC}\times B^{AC}\times C^{AB}=729}\\\bullet\:\:\sf{A^\frac{1}{A}= \:?}

Let, \sf A^\frac{1}{A}=B^\frac{1}{B}=C^\frac{1}{C}=n

\rule{120}{1}

Taking Power ABC each side.

:\implies\tt A^\frac{1}{A}=B^\frac{1}{B}=C^\frac{1}{C}=n\\\\\\:\implies\tt A^{\frac{1}{A} \times ABC}=B^{\frac{1}{B}  \times ABC}=C^{\frac{1}{C} \times ABC}=n^{ABC}\\\\\\:\implies\tt A^{BC}= B^{AC}= C^{AB}=n^{ABC}

\rule{200}{1}

☯⠀\underline{\textsf{We have Given that :}}

\dashrightarrow\tt\:\:A^{BC}\times B^{AC}\times C^{AB}=729\\\\\\\dashrightarrow\tt\:\:n^{ABC}\times n^{ABC}\times n^{ABC}=729\\\\\\\dashrightarrow\tt\:\:n^{{ABC}^3}=729\\\\\\\dashrightarrow\tt\:\:n^{ABC} = \sqrt[3]{729}\\\\\\\dashrightarrow\tt\:\:n^{ABC} =  \sqrt[3]{9 \times 9 \times 9}\\\\\\\dashrightarrow\tt\:\:n^{ABC} = 9\\\\\\\dashrightarrow\tt\:\:\Large\underline{\boxed{\green{\tt n = \sqrt[ABC]{9} = A^\frac{1}{A}}}}

\therefore\:\underline{\sf{Correct \:Option \:will \:be\:\:d) \bf{\sqrt[ABC]{9}}}.}


Anonymous: :clapping:
Similar questions