Math, asked by suvo50, 1 year ago

Please solve question no. 7. Please guys today is my test

Attachments:

Answers

Answered by amanya012
4
here is your answer....

pls mark it as brainliest ❤️❤️❤️❤️❤️
Attachments:
Answered by Anonymous
5
Hey there !!


▶ Question :-


If \sqrt{3} tan \theta = 3sin \theta , \: prove \: that( {sin}^{2}  \theta -  {cos}^{2}  \theta) =  \frac{1}{3} .


▶ Solution :-

 \sqrt{3} tan \theta = 3sin \theta. \\  \\  =  >  \frac{tan \theta}{sin \theta}  =  \frac{3}{ \sqrt{3} } . \\  \\  =  >  \frac{ \frac{ \cancel {sin \theta}}{cos \theta} }{ \cancel{sin \theta}}  =  \frac{  \cancel{\sqrt{3}} \times  \sqrt{3}  }{  \cancel{\sqrt{3}} } . \\  \\  =  >  \frac{1}{cos \theta}  =  \sqrt{3} . \\  \\  =  > cos \theta =  \frac{1}{ \sqrt{3} } .


▶ Now,


 \bf{Solving \:  LHS } \\  \\  =    {sin}^{2}  \theta -  {cos}^{2}  \theta. \\  \\  =  1 -  {cos}^{2}  \theta -  {cos}^{2}  \theta. \\ ( \therefore  {sin}^{2}  \theta = 1 -  {cos}^{2}  \theta). \\  \\  = 1 - 2 {cos}^{2}  \theta. \\  \\  = 1 - 2 {( \frac{1}{ \sqrt{3} } )}^{2} . \\  \\  = 1 - 2 \times  \frac{1}{3} . \\  \\  = 1 -  \frac{2}{3} . \\  \\  =  \frac{3 - 2}{3} . \\  \\   \huge  \boxed{ \boxed{ \bf =  \frac{1}{3} .}} \checkmark \checkmark


 \huge \bf \underline{ \mathbb{LHS = RHS .}}



✔✔ Hence, it is proved ✅✅.

____________________________________



THANKS


#BeBrainly.
Similar questions