Math, asked by INDIANvMA, 1 year ago

Please solve question no. 99

Attachments:

Answers

Answered by Anonymous
127

\underline{\underline{\mathfrak{\green{Answer:-}}}}

(C) \dfrac{1}{{x}^{2}}

\underline{\underline{\mathfrak{\green{Explanation:-}}}}

Given:

secA + tanA = x

\\

To Find:

\mathsf{{sec}^{4}A-{tan}^{4}A-2\: secA \times tanA}

\\

Solution:

Given that,

\mathsf{secA + tanA = x  }

As we know

\boxed{\pink{{sec}^{2}A-{tan}^{2}A= 1}}

\\

Now,

\mathsf{{sec}^{2}A-{tan}^{2}A = 1}

\mathsf{(secA+tanA)(secA-tanA)= 1}

\mathsf{x(secA-tanA)= 1}

\mathsf{secA-tanA= \dfrac{1}{x}}

\\

Let us find,

\mathsf{{sec}^{4}A-{tan}^{4}A-2 \: secA \times tanA}

_______________________

\mathsf{={sec}^{4}A-{tan}^{4}A-2 \: secA \times tanA}

\mathsf{={({sec}^{2}A)}^{2}-{({tan}^{2}A)}^{2}-2 \: secA \times tanA}

\\

As we know

\boxed{\pink{{a}^{2}-{b}^{2} = (a+b)(a-b)}}

\\

\mathsf{=({sec}^{2}A+{tan}^{2}A)({sec}^{2}A-{tan}^{2}A)-2 \: secA \times tanA}

\mathsf{=({sec}^{2}A+{tan}^{2}A)(1)-2b\: secA \times tanA}

\mathsf{={sec}^{2}A+{tan}^{2}A-2 \: secA \times tanA}

\\

It is in the form-

\boxed{\pink{{a}^{2}+{b}^{2}-2ab = {(a-b)}^{2}}}

\mathsf{={(secA-tanA)}^{2}}

we got

\boxed{\mathsf{secA-tanA= \dfrac{1}{x}}}

\\

By sub. the value

\mathsf{={(\dfrac{1}{x})}^{2}}

\mathsf{= \dfrac{1}{{x}^{2}}}

\\

Hence,

\mathsf{{sec}^{4}A-{tan}^{4}A-2 \: secA \times tanA = \dfrac{1}{{x}^{2}}}

\\

\mathbb{\pink{NOTE}}

Assume 'A' as 'α'


Anonymous: wello
Anonymous: ^_^
pranay014: hello
LAKSHMINEW: Superb as always!❤
MathsAryabhatta: nice ra
Anonymous: No thanks mama! xD
Anonymous: ✌✌best
meghakatiyar1: Nice
sairambandari: osm broo❤❤
Answered by DhanyaDA
48

ANSWER:

given

sec \alpha  +  tan \alpha  = x

REQUIRED TO FIND

 {sec}^{4}  \alpha  -  {tan}^{4}  \alpha  - 2sec \alpha  \times tan \alpha

METHOD

in the attachment

IDENTITIES USED:

 >  {sec}^{2}  \alpha  -  {tan}^{2}  \alpha  = 1 \\  \\  >  {a}^{2}  -  {b}^{2}  = (a + b)(a - b)

 \\ >   {(a - b)}^{2}  =  {a}^{2}  +  {b}^{2}  - 2ab

Attachments:

DhanyaDA: thanks sweetie
Anonymous: wow!!!!!
BrainlyElegantdoll: Welli...Oreo♥️
DhanyaDA: ^_^ @akrock98
Anonymous: amazing ✌
DhanyaDA: thank u
Anonymous: wello ✌
Anonymous: rocked it.. pilla
LAKSHMINEW: Awesome handwriting& answer my to.pp.er aa.ka❤❤
DhanyaDA: thank u
Similar questions