Math, asked by jaiduttthapliyp9zy0w, 8 months ago

please solve question number 12 .​

Attachments:

Answers

Answered by shadowsabers03
5

Given,

\longrightarrow\left|\begin{array}{ccc}7&6&x\\2&x&2\\x&3&7\end{array}\right|=0

Perform the operation C_1\to C_1-C_3.

\longrightarrow\left|\begin{array}{ccc}7-x&6&x\\2-2&x&2\\x-7&3&7\end{array}\right|=0

\longrightarrow\left|\begin{array}{ccc}-(x-7)&6&x\\0&x&2\\x-7&3&7\end{array}\right|=0

We can take x-7 outside from C_1.

\longrightarrow(x-7)\left|\begin{array}{ccc}-1&6&x\\0&x&2\\1&3&7\end{array}\right|=0

This implies,

\longrightarrow\underline{\underline{x=7}}

Or,

\longrightarrow\left|\begin{array}{ccc}-1&6&x\\0&x&2\\1&3&7\end{array}\right|=0

Expanding this discriminant along C_1,

\longrightarrow-1(7x-6)+1(12-x^2)=0

\longrightarrow x^2+7x-18=0

\longrightarrow x^2+9x-2x-18=0

\longrightarrow x(x+9)-2(x+9)=0

\longrightarrow (x+9)(x-2)=0

This implies,

\longrightarrow\underline{\underline{x=-9}}

\longrightarrow\underline{\underline{x=2}}

So the roots of the equation are,

\longrightarrow \underline{\underline{x\in\{-9,\ 2,\ 7\}}}

And the other roots are 2 and 7.

Similar questions