please solve quick the following problem quick
Attachments:
Answers
Answered by
5
HELLO DEAR,
let the first term of AP be A and common difference be d.
the first p terms is
the first q term is
the first r term is
adding the Equation--(1) , --(2) , & --(3)
multiply by (q - r) in--(1) , (r - p) in -(2) & (p - q) in -(3)
we get,
a(q - r) + b(r - p) + c(p - q) = [A + (p - 1)d](q - r) + [A + (q - 1)d](r - p) + [A + ( p - 1)d](p - q)
=> ą(ʠ -ŗ) + ɓ(ŗ - p) + ç(p - ʠ) = Ą(ʠ - ŗ + ŗ - p + p - ʠ) + d [ (P - 1)(ʠ - ŗ) + (ʠ - 1)(ŗ - p) + (ʀ - 1)(p - ʠ)
=> ą(ʠ -ŗ) + ɓ(ŗ - p) + ç(p - ʠ) = ᴀ(0) + ᴅ( ᴘǫ - ᴘʀ - ǫ + ʀ + Ǫʀ - ᴘǫ - ʀ + ᴘ + ᴘʀ - ǫʀ - ᴘ + ǫ)
=> ą(ʠ -ŗ) + ɓ(ŗ - p) + ç(p - ʠ) = 0 + ᴅ(0)
=> ą(ʠ -ŗ) + ɓ(ŗ - p) + ç(p - ʠ) = 0
ɪ ʜᴏᴘᴇ ɪᴛs ʜᴇʟᴘ ʏᴏᴜ ᴅᴇᴀʀ,
ᴛʜᴀɴᴋs
let the first term of AP be A and common difference be d.
the first p terms is
the first q term is
the first r term is
adding the Equation--(1) , --(2) , & --(3)
multiply by (q - r) in--(1) , (r - p) in -(2) & (p - q) in -(3)
we get,
a(q - r) + b(r - p) + c(p - q) = [A + (p - 1)d](q - r) + [A + (q - 1)d](r - p) + [A + ( p - 1)d](p - q)
=> ą(ʠ -ŗ) + ɓ(ŗ - p) + ç(p - ʠ) = Ą(ʠ - ŗ + ŗ - p + p - ʠ) + d [ (P - 1)(ʠ - ŗ) + (ʠ - 1)(ŗ - p) + (ʀ - 1)(p - ʠ)
=> ą(ʠ -ŗ) + ɓ(ŗ - p) + ç(p - ʠ) = ᴀ(0) + ᴅ( ᴘǫ - ᴘʀ - ǫ + ʀ + Ǫʀ - ᴘǫ - ʀ + ᴘ + ᴘʀ - ǫʀ - ᴘ + ǫ)
=> ą(ʠ -ŗ) + ɓ(ŗ - p) + ç(p - ʠ) = 0 + ᴅ(0)
=> ą(ʠ -ŗ) + ɓ(ŗ - p) + ç(p - ʠ) = 0
ɪ ʜᴏᴘᴇ ɪᴛs ʜᴇʟᴘ ʏᴏᴜ ᴅᴇᴀʀ,
ᴛʜᴀɴᴋs
rohitkumargupta:
:-)
Similar questions