Please solve sec^8x/cosec x .dx
Answers
Answered by
10
∫sec8(x)cosec(x)dx∫sec8(x)cosec(x)dx
Since sec(x)=1cos(x)sec(x)=1cos(x)
And cosex(x)=1sin(x)cosex(x)=1sin(x)
The equation can be written as
∫sin(x)cos(x)sec7(x)dx∫sin(x)cos(x)sec7(x)dx
∫tan(x)sec7(x)dx∫tan(x)sec7(x)dx
Let u=sec(x)u=sec(x)
dudx=sec(x)tan(x)dxdudx=sec(x)tan(x)dx
Substituting,
∫tan(x)sec7(x)dx=∫u6du∫tan(x)sec7(x)dx=∫u6du
Integrating,
=[u77]=[u77]
Substituting u back,
=sec7(x)7+C...
Since sec(x)=1cos(x)sec(x)=1cos(x)
And cosex(x)=1sin(x)cosex(x)=1sin(x)
The equation can be written as
∫sin(x)cos(x)sec7(x)dx∫sin(x)cos(x)sec7(x)dx
∫tan(x)sec7(x)dx∫tan(x)sec7(x)dx
Let u=sec(x)u=sec(x)
dudx=sec(x)tan(x)dxdudx=sec(x)tan(x)dx
Substituting,
∫tan(x)sec7(x)dx=∫u6du∫tan(x)sec7(x)dx=∫u6du
Integrating,
=[u77]=[u77]
Substituting u back,
=sec7(x)7+C...
nisha1425:
thanx
Similar questions