please solve .....send pics of steps also....don't spam ......
Answers
Answer:
Step-by-step explanation:
Give than
α and β are zeroes of polynomial x² - ax + b.
Sum of zeroes = -(Coefficient of x/Coefficient of x²)
α + β = -(-a/1)
α + β = a
Product of zeroes = (Constant Term/Coefficient of x²)
αβ = b/1
αβ = b
Now,
(α - β)² = (α + β)² - 4αβ
(α - β)² = a² - 4b
α² + β² = (α + β)² - 2αβ
α² + β² = a² - 2b
Thus option 3) is correct.
Note:-
(a³ - b³) = (a - b)(a² + b² + ab)
(a² - b²) = (a + b)(a - b)
(a - b)² = (a + b)² - 4ab
ba(a2−4b)(a2−b)
Step-by-step explanation:
Give than
α and β are zeroes of polynomial x² - ax + b.
Sum of zeroes = -(Coefficient of x/Coefficient of x²)
α + β = -(-a/1)
α + β = a
Product of zeroes= (Constant TermCoefficient of x²)
αβ = b/1
αβ = b
Now,
(α - β)² = (α + β)² - 4αβ
(α - β)² = a² - 4b
α² + β² = (α + β)² - 2αβ
α² + β² = a² - 2b
α^2(βα^2−β)+β^2(αβ^2−α) =α^2(βα^2−β^2)+β^2(αβ^2−α^2)
=α^2(βα^2−β^2)−β^2(αα^2−β^2) =αβα^3(α^2−β^2)−β^3(α^2−β^2)
=αβ(α^2−β^2)(α^3−β^3)
=αβ(α^2−β^2)(α^2+β^2+αβ)(α−β)
=αβ(α−β)(α+β)(α^2+β^2+αβ)(α−β)
=αβ(α−β)2(α+β)(α2+β2+αβ)
=(a^2-4b)a(a^2-2b+b)
=a(a^2-4b)
=b(a^2−4^b)a(a^2−2b+b)
=ba(a^2−4^b)(a^2−b)
Thus option 3) is correct.
Note:-
(a³ - b³) = (a - b)(a² + b² + ab)
(a² - b²) = (a + b)(a - b)
(a - b)² = (a + b)² - 4ab