Math, asked by mulagi, 4 months ago

please solve solve its argent ​

Attachments:

Answers

Answered by Anonymous
3

Answer:-

We have to factorise:-

  \sf \: \dfrac{75(2x - 10)}{8( {x}^{2} - 10x) }  = 1 \\  \\  \\  \implies \sf \: 150x - 750 = 8 {x}^{2}  - 80x \\  \\  \\ \implies \sf \:0 = 8 {x}^{2}  - 80x - 150x  + 750 \\  \\  \\ \implies \sf \:0 = 8 {x}^{2}  - 230x + 750 \\  \\  \\ \implies \sf \:0 = 2(4 {x}^{2}  - 115x + 375) \\  \\  \\ \implies \sf \:4 {x}^{2}  - 115x + 375 = 0 \\  \\  \\ \implies \sf \:4 {x}^{2}  - 100x - 15x + 375 = 0 \\  \\  \\ \implies \sf \:4x( {x}  - 25) - 15(x - 25) = 0 \\  \\  \\ \implies  \boxed{\sf \:(x - 25)(4x - 15) = 0}

Answered by Anonymous
43

Step-by-step explanation:

Answer:-

We have to factorise:-

\begin{gathered} \sf \: \dfrac{75(2x - 10)}{8( {x}^{2} - 10x) } = 1 \\ \\ \\ \implies \sf \: 150x - 750 = 8 {x}^{2} - 80x \\ \\ \\ \implies \sf \:0 = 8 {x}^{2} - 80x - 150x + 750 \\ \\ \\ \implies \sf \:0 = 8 {x}^{2} - 230x + 750 \\ \\ \\ \implies \sf \:0 = 2(4 {x}^{2} - 115x + 375) \\ \\ \\ \implies \sf \:4 {x}^{2} - 115x + 375 = 0 \\ \\ \\ \implies \sf \:4 {x}^{2} - 100x - 15x + 375 = 0 \\ \\ \\ \implies \sf \:4x( {x} - 25) - 15(x - 25) = 0 \\ \\ \\ \implies \boxed{\sf \:(x - 25)(4x - 15) = 0}\end{gathered}

8(x

2

−10x)

75(2x−10)

=1

⟹150x−750=8x

2

−80x

⟹0=8x

2

−80x−150x+750

⟹0=8x

2

−230x+750

⟹0=2(4x

2

−115x+375)

⟹4x

2

−115x+375=0

⟹4x

2

−100x−15x+375=0

⟹4x(x−25)−15(x−25)=0

(x−25)(4x−15)=0

Similar questions