Math, asked by aashnasharma27, 8 months ago

please solve soon with formula​

Attachments:

Answers

Answered by DrNykterstein
6

Edges of Triangular board:

6cm , 8cm , 10 cm

 \\

Let, 6cm = a , 8cm = b, and 10cm = c

 \\ \\

So,

Semi-perimeter = half the sum of all the three sides

☛ s = (a + b + c )/ 2

☛ s = (6+8+10) / 2

☛ s = 24/2

s = 12cm

 \\ \\

Now, By Heron's formula,

 \sf Area  \: of  \: a  \: \Delta ABC  =  \sqrt{s(s - a)(s - b)(s - c)}

So, Applying the Heron's formula on this triangle, we get the area as:

 \\ \\ \sf \rightarrow \quad  \sqrt{12(12 - 6)(12 - 8)(12 - 10)}  \\  \\ \sf \rightarrow \quad  \sqrt{12 \times 6 \times 4 \times 2}  \\  \\ \sf \rightarrow \quad  \sqrt{ {2}^{2}  \times 3 \times 3 \times 2 \times  {2}^{2}  \times 2}  \\  \\ \sf \rightarrow \quad  \sqrt{ {2}^{2}  \times  {3}^{2} \times  {2}^{2}   \times  {2}^{2} }  \\  \\ \sf \rightarrow \quad 2 \times 3 \times 2 \times 2 \\  \\ \sf \rightarrow \quad 24 \:  {cm}^{2} \\ \\

So, We get area as 24 cm²

 \\ \\

Now,

Rate of painting = 9 paise / cm²

Cost = Area × Rate of painting

☛ Cost = 24 × 9

☛ Cost = 216 paise

 \\ \\

Now, Convert the cost into Rupees

☛ 1 Rupee = 100 Paise

 \\

So,

Cost = 216 /100

Cost = 2.16 Rupees

 \\ \\ \\

Hence, Second Option is correct.

Similar questions