Math, asked by rangilthakur71, 7 hours ago

Please solve
\left. \begin{array}  { l  }  { \frac { 3 } { 2 x } + \frac { 2 } { 3 y } = 5 } \\ \\  { \frac { 5 } { x } - \frac { 3 } { y } = 1 } \end{array} \right.
(Ch- Linear Equations)​

Answers

Answered by gaurav311208
1

Answer:

  • 2x=5N
  • [5]-11 z=6 t

  • plz follow

Step-by-step explanation:

plz understand brain list answer

Answered by itzMeGunjan
6

Two Equations are :-

  \:  \:  \:  \:  \:  \:  \:  \:  \: \tt{ \frac{3}{2x}  +  \frac{2}{3y} = 5 } \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt \:  \frac{5}{x}  -  \frac{3}{y}  = 1

Find :-

  • Value of x and y

Solution :-

Let \rm \frac{1}{x}= A, \rm \frac{1}{y} = B

  \:  \:  \:  \:  \:  \:  \:  \:  \:   \hookrightarrow\orange{\tt{ \frac{3}{2} \sf \: A  +  \frac{2}{3}  B= 5 } } -  -  (1)\\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \hookrightarrow\orange{\tt \:  5 \sf \: A -  {3}  \sf \: B= 1 }-  - (2)

Multiplying eq (1) by 3 and also multiplying eq (2) by to equal the coefficient of B. i. e,

\dashrightarrow\tt{ \frac{3}{2} \sf \: A  +  \frac{2}{3}  B= 5 }  \red{\times 3 }\\   \dashrightarrow\tt \:  5 \sf \: A -  {3}  \sf \: B= 1  \red{ \times  \frac{2}{3} }

 \tt \frac{9}{2} A \:  \:  \cancel{ + 2B }= 15 \\   \underline{ \:  \:  \:  \ +  \:   \:  \:   \:  \: \tt \frac{10}{3} A \:  \:  \cancel{  - 2B} =  ⅔ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \\   \\   \rightarrow \bigg(\frac{9}{2}   +  \frac{10}{3} \bigg) \sf A =  \frac{15}{ \red1}  +  \frac{2}{3}  \\  \\  \implies \frac{27 + 20}{6}  \sf \: A +  \frac{45 + 2}{3}  \\  \rightarrow  \:  \:  \:  \: \frac{ 47}{6}  \sf \: A +  \frac{ 47}{3}  \\  \sf \: \:  \:  \:  \:  \rightarrow \:  \:  \:   A =  \cancel{ \frac{6}{3} } \\  \implies \sf \: \large{ \boxed{  \green{ \tt A = 2}}}

Substituting the Value of A in eq (2) to get the value of B.

 \rightarrow5A - 3B = 1 \\  \rightarrow5 \times 2 - 3B = 1 \\  \rightarrow \: 10 - 3B = 1 \\  \rightarrow - 3B = 1 - 10 \\ \cancel  - 3B =   \rightarrow \cancel- 9 \\ \rightarrow B =   \cancel{\frac{9}{3}}  \\ \hookrightarrow \large \boxed{    \green{\tt \: B = 3}}

Substitute the Value of A and B in our assumption to get final answer value of x and y

 \:  \:  \:  \:  \:  \:  \:  \sf  \frac{1}{x} =  A \implies \frac{1}{x}  = 2 \\  \dashrightarrow \boxed{ \underline{ \tt \: x =  \frac{1}{2} }} \\

Similarly for B

 \:  \:  \:  \:  \:  \:  \:  \sf  \frac{1}{y} =  B  \implies \frac{1}{y}  = 3 \\  \dashrightarrow \boxed{ \underline{ \tt \: y =  \frac{1}{3} }} \\

Similar questions