Math, asked by Anonymous, 5 months ago

please solve
thank you ​

Attachments:

Answers

Answered by kharbashu901gmailcom
1

Answer:

0

Step-by-step explanation:

0 because 1+1-2=0 so ans is zero

Answered by anindyaadhikari13
3

Required Answer:-

Given to Evaluate:

  •  \rm \dfrac{ \cot(54 \degree) }{ \tan(36\degree)}  +  \dfrac{ \tan(20 \degree) }{ \cot(70 \degree) }  - 2

Solution:

This question can be solved by using Complementary angle formula.

Let's Know the formula.

 \rm \star \tan(90 \degree -  \alpha )  =  \cot( \alpha )

 \rm \star \cot(90 \degree -  \alpha )  =  \tan( \alpha )

We shall use this formula to evaluate the expression.

Let's start.

We have.

 \rm \dfrac{ \cot(54 \degree) }{ \tan(36\degree)}  +  \dfrac{ \tan(20 \degree) }{ \cot(70 \degree) }  - 2

Can be written as,

 \rm  = \dfrac{ \cot(90 \degree - 36 \degree) }{ \tan(36\degree)}  +  \dfrac{ \tan(90 \degree - 70 \degree) }{ \cot(70 \degree) }  - 2

Now, applying the formula, we get,

 \rm  = \dfrac{ \tan(36 \degree) }{ \tan(36\degree)}  +  \dfrac{ \cot(70 \degree) }{ \cot(70 \degree) }  - 2

Cancelling out the terms, we get,

 \rm = 1 + 1 - 2

 \rm = 2 - 2

 \rm = 0

Hence,

 \rm  \star \:  \: \dfrac{ \cot(54 \degree) }{ \tan(36\degree)}  +  \dfrac{ \tan(20 \degree) }{ \cot(70 \degree) }  - 2 = 0

Answer:

  •  \rm  \dfrac{ \cot(54 \degree) }{ \tan(36\degree)}  +  \dfrac{ \tan(20 \degree) }{ \cot(70 \degree) }  - 2 = 0
Similar questions