Math, asked by Anonymous, 5 months ago

please solve
thank you ​

Attachments:

Answers

Answered by anindyaadhikari13
3

Required Answer:-

Given to evaluate:

  •  \rm \dfrac{ \sin(80 \degree) }{ \cos(10 \degree) }  +  \sin(59 \degree)  \sec(31 \degree)

Solution:

This question can be solved by using complementary angle formula.

Let's know them.

 \rm \star \sin(90 \degree -  \alpha  )=  \cos( \alpha )

 \rm \star \cos(90 \degree -  \alpha  )=  \sin( \alpha )

Using this formula, we will solve the problem.

Here comes the solution.

 \rm \dfrac{ \sin(80 \degree) }{ \cos(10 \degree) }  +  \sin(59 \degree)  \sec(31 \degree)

 \rm  = \dfrac{ \sin(80 \degree) }{ \cos(10 \degree) }  +  \dfrac{ \sin(59 \degree) }{ \cos(31 \degree) }

Now, apply the formula here,

 \rm  = \dfrac{ \sin(80 \degree) }{ \cos(90 \degree - 80 \degree) }  +  \dfrac{ \sin(90\degree - 31 \degree) }{ \cos(31 \degree) }

Evaluate,

 \rm  = \dfrac{ \sin(80 \degree) }{ \sin( 80 \degree) }  +  \dfrac{ \cos(31 \degree) }{ \cos(31 \degree) }

Cancel out,...

 \rm = 1 + 1

 \rm = 2

Hence,

 \rm \star \dfrac{ \sin(80 \degree) }{ \cos(10 \degree) }  +  \sin(59 \degree)  \sec(31 \degree)  = 2

Answer:

  •  \rm \dfrac{ \sin(80 \degree) }{ \cos(10 \degree) }  +  \sin(59 \degree)  \sec(31 \degree)  = 2
Answered by Anonymous
3

Required Answer:-

Given to evaluate:

\rm \dfrac{ \sin(80 \degree) }{ \cos(10 \degree) } + \sin(59 \degree) \sec(31 \degree)

Solution:

This question can be solved by using complementary angle formula.

Let's know them.

\rm \star \sin(90 \degree - \alpha )= \cos( \alpha )⋆sin(90°−α)=cos(α)

\rm \star \cos(90 \degree - \alpha )= \sin( \alpha )⋆cos(90°−α)=sin(α)</p><p>

Using this formula, we will solve the problem.

Here comes the solution.

\rm \dfrac{ \sin(80 \degree) }{ \cos(10 \degree) } + \sin(59 \degree) \sec(31 \degree) </p><p>cos(10°)</p><p>sin(80°)</p><p>

\rm = \dfrac{ \sin(80 \degree) }{ \cos(10 \degree) } + \dfrac{ \sin(59 \degree) }{ \cos(31 \degree) } </p><p>

Now, apply the formula here,

\rm = \dfrac{ \sin(80 \degree) }{ \cos(90 \degree - 80 \degree) } + \dfrac{ \sin(90\degree - 31 \degree) }{ \cos(31 \degree) }

Evaluate,

\rm = \dfrac{ \sin(80 \degree) }{ \sin( 80 \degree) } + \dfrac{ \cos(31 \degree) }{ \cos(31 \degree) }

Cancel out,...

\rm = 1 + 1=1+1

\rm = 2=2

Hence,

\rm \star \dfrac{ \sin(80 \degree) }{ \cos(10 \degree) } + \sin(59 \degree) \sec(31 \degree)

Answer:

\rm \dfrac{ \sin(80 \degree) }{ \cos(10 \degree) } + \sin(59 \degree) \sec(31 \degree)

Similar questions