Math, asked by angelina231, 11 months ago

please solve the 11 th question​

Attachments:

Answers

Answered by Anonymous
83

Question :

If  \sf x =  \dfrac{e {}^{y}  - e {}^{ - y} }{e {}^{y} + e {}^{ - y}  }

Prove that :

 \sf y =  \frac{1}{2}  \ log( \frac{1 + x}{1 - x} )

Solution :

 \sf x =  \dfrac{e {}^{y} - e {}^{ - y}  }{e {}^{ {}^{y} }  + e {}^{ - y} } </p><p>  \implies  \sf x(e {}^{y}  + e {}^{ - y} ) = e {}^{y}  - e {}^{ - y}

Let \bf\:e{}^{y}=t

 \implies \sf x(t +t {}^{ - 1} ) = (t - t {}^{ - 1} )

 \implies  \sf x(t +  \frac{1}{t} ) = (t -  \frac{1}{t} )

 \implies \sf x( \frac{t {}^{2} + 1 }{ \cancel{t}} ) = ( \frac{t {}^{2}  - 1}{ \cancel{t}} )

 \implies  \sf x(t {}^{2}  + 1) = (t {}^{2}  - 1)

 \implies  \sf xt {}^{2}  + x = t {}^{2}  - 1

 \implies \sf 1 + x = t {}^{2}  - xt {}^{2}

 \implies \sf  (1 + x)  = t {}^{2} (1 - x)

 \implies \sf t {}^{2}  =  \frac{1 + x}{1 - x}

 \implies \sf t =  \sqrt{ \frac{1 + x}{1 - x} }

 \implies \sf e {}^{y}  =  \sqrt{ \frac{1 + x}{1 - x} }

Take log on both sides

 \implies   \sf  \log_{e}(e {}^{y} ) =  \log_{e}( \sqrt{ \frac{1 + x}{1 - x} } )

We know that \bf\:\log(x{}^{n})=n\log\:x

 \implies \sf y \ log_{e}(e)  =  \frac{1}{2}  log_{e}( \frac{1 + x}{1 - x} )

 \implies \bf y =  \ log_{e}( \dfrac{1 + x}{1 - x} )

Hence proved !

Similar questions