English, asked by vashishthviraaj, 2 months ago

please solve the 27 th​

Attachments:

Answers

Answered by TYKE
2

 \frac{z - 1}{z + 1}  \\  =  \frac{x - iy}{x - iy}

 \frac{(x - 1 + y)(x + 1 - y)}{(x + 1)^{2}   + y^{2} }

 \frac{ {x}^{2} - 1 +  {y}^{2}  + i(y(x +  1) - y(x - 1)) }{ {(x + 1)}^{2}  +  {y}^{2} }

now \: if \: this \: complex \: number \: is \: \\  purely \: imaginary  \: then \: we \: must \: have \:  \\  {x}^{2}  - 1 +  {y}^{2}  = 0

or \:  {x}^{2}  +  {y}^{2}  = 1

or \:  |z|  = 1

Similar questions