Please solve the 35Q in the attached image
Answers
Given that 3 is a root of f(x) = ax² + bx + c = 0.
f(3) = a(3)² + b(3) + c = 0
f(3) = 9a + 3b + c = 0
4 · f(3) = 4(9a + 3b + c) = 4 · 0
4 · f(3) = 36a + 12b + 4c = 0 → (1)
Given that f(5) = - 3 · f(2).
f(5) = - 3 · f(2)
⇒ a(5)² + b(5) + c = - 3 (a(2)² + b(2) + c)
⇒ 25a + 5b + c = - 3(4a + 2b + c)
⇒ 25a + 5b + c = - 12a - 6b - 3c
⇒ 25a + 5b + c + 12a + 6b + 3c = 0
⇒ 37a + 11b + 4c = 0 → (2)
From (1) and (2),
37a + 11b + 4c = 36a + 12b + 4c
⇒ 37a + 11b + 4c - 36a - 12b - 4c = 0
⇒ a - b = 0
⇒ a = b
⇒ b / a = 1
⇒ - b / a = - 1
From (1),
36a + 12b + 4c = 0
⇒ 36a + 12a + 4c = 0 = 36b + 12b + 4c
⇒ 48a + 4c = 0 = 48b + 4c
⇒ 4(12a + c) = 0 = 4(12b + c)
⇒ 12a + c = 0 = 12b + c
⇒ a = b = - c / 12
⇒ c = - 12a = - 12b
Now,
(A) Let the other root be k.
Sum of roots = k + 3 = - b / a = - 1
k + 3 = - 1 ⇒ k = - 1 - 3 = - 4.
Hence option (2) is the answer.
(B) In terms of a,
a + b + c = a + a - 12a = - 10a
In terms of b,
a + b + c = b + b - 12b = - 10b
In terms of c,
a + b + c = - c / 12 - c / 12 + c = 5c / 6
From each of these, we can find out that the value of a + b + c is dependent on each coefficient, means it won't be a constant. So we can't determine the value of it.
Hence option (5) is the answer.