Math, asked by Sid000, 1 year ago

please solve the above quadratic equation.

I want content quality answer with steps.

Content Quality answers will be marked as brainliest.

Attachments:

sss93: wt should be the ans

Answers

Answered by GovindRavi
2
hope this hlp...........
Attachments:

Sid000: Very well answered
Sid000: Sorry I didn't t mark your answer as brainliest although it was completely perfect .
GovindRavi: its k....i dont want that...i m here for the help for student if possible from my side...
GovindRavi: :)
Answered by siddhartharao77
3
Given Equation is x^2 - 5x - (p-3)(p+2) = 0

= > x^2 - 5x - (p - 3)(p + 2) = 0

= > x^2 - 5x - (p^2 + 2p - 3p - 6) = 0

= > x^2 - 5x - (p^2 - p - 6)= 0 

= > x^2 - 5x - p^2 + p + 6 = 0

The equation is in the form of ax^2 + bx + c = 0.

a = 1,b = -5,c = -p^2 + p + 6.


We know that :

x =  \frac{-b +  \sqrt{b^2-4ac} }{2a}

x =  \frac{-(-5) +  \sqrt{(-5)^2 - 4 * 1 * (-p^2 + p + 6) } }{2 * 1}
 
   =  \frac{5 +  \sqrt{25 - 4(-p^2 + p + 6)} }{2}
   
   =  \frac{5 +  \sqrt{25 - 4p^2 - 4p - 24} }{2}

   =  \frac{5 +   \sqrt{4p^2 - 4p + 1} }{2}

   =  \frac{5 +  \sqrt{(2p - 1)^2} }{2}

   =  \frac{5 + 2p - 1}{2}

   =  \frac{2p+4}{2}

   =  \frac{2(p + 2)}{2}

   = p + 2.



We know that:

x =  \frac{-b -  \sqrt{b^2-4ac} }{2a}

          =  \frac{-5 -  \sqrt{(-5)^2 - 4 * 1 * (-p^2 + p + 6)} }{2 * 1}

         =  \frac{5 -  \sqrt{(2p-1)^2} }{2}

         =  \frac{5 - (2p-1)}{2}

         =  \frac{5 - 2p + 1}{2}

         =  \frac{-2p+6}{2}

         =  \frac{2(-p+3)}{2}

         = -p+3.


Hope this helps!

Sid000: A lot of thanks
GovindRavi: welcome
siddhartharao77: :-))
Similar questions