Math, asked by priyanshustars, 1 month ago

please solve the above question​

Attachments:

Answers

Answered by mathdude500
3

 \purple{\large\underline{\sf{Given \:Question - }}}

Prove that

 \sf \: \dfrac{1 + 2sin\theta  +  {sin}^{2} \theta }{ {cos}^{2} \theta }  = \dfrac{sec\theta  + tan\theta }{sec\theta  - tan\theta }

\large\underline{\sf{Solution-}}

Consider, RHS

 \rm :\longmapsto\:\dfrac{sec\theta  + tan\theta }{sec\theta  - tan\theta }

On rationalizing the denominator, we get

 \rm \:  =  \: \dfrac{sec\theta  + tan\theta }{sec\theta  - tan\theta }  \times \dfrac{sec\theta  + tan\theta }{sec\theta  + tan\theta }

 \rm \:  =  \: \dfrac{ {(sec\theta  + tan\theta )}^{2} }{ {sec}^{2} \theta  -  {tan}^{2} \theta }

We know,

\boxed{ \bf{ \: {(x + y)}^{2} =  {x}^{2} +  {y}^{2} + 2xy}}

and

\boxed{ \bf{ \: {sec}^{2}x -  {tan}^{2}x = 1}}

So, using these, Identities, we get

 \rm \:  =  \: \dfrac{ {sec}^{2} \theta  +  {tan}^{2} \theta  + 2sec\theta tan\theta }{1}

We know,

\boxed{ \bf{ \:secx =  \frac{1}{cosx}}}

and

\boxed{ \bf{ \:tanx =  \frac{sinx}{cosx}}}

So, using these we get,

 \rm \:  =  \:  {\bigg[\dfrac{1}{cos\theta }\bigg]}^{2} +  {\bigg[\dfrac{sin\theta }{cos\theta }\bigg]}^{2} + 2 \times \dfrac{1}{cos\theta }  \times \dfrac{sin\theta }{cos\theta }

 \rm \:  =  \: \dfrac{1}{ {cos}^{2} \theta }  + \dfrac{ {sin}^{2} \theta }{ {cos}^{2}\theta}  + \dfrac{2sin\theta }{ {cos}^{2}\theta}

 \rm \:  =  \: \dfrac{1 +  {sin}^{2} \theta  + 2sin\theta }{ {cos}^{2} \theta}

 \rm \:  =  \: \dfrac{1+ 2sin\theta  + {sin}^{2} \theta }{ {cos}^{2} \theta}

Hence,

 \boxed{ \bf{ \:\dfrac{1 + 2sin\theta  +  {sin}^{2} \theta }{ {cos}^{2} \theta }  = \dfrac{sec\theta  + tan\theta }{sec\theta  - tan\theta } }}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions