Math, asked by livinglegendstrom, 9 months ago

Please solve the above question with explanation​

Attachments:

Answers

Answered by Rohith200422
3

\huge\boxed{Question}

To find the middle term of the A.P. 19, 16, 13, 10,....., - 53.

\huge\boxed{Answer}

19, 16, 13, 10,......, - 53

a \: (first \: term) = 19

d \: (common \: difference) =  {t}(2) - {t}(1)

d = 16 - 19 =  - 3

\underline\boxed{d = - 3}

l \: (last \: term) =  - 53

n(no.of \: terms) =  \frac{l - a}{d}  + 1

n =  \frac{ - 53 - 19}{ - 3}  + 1

 =  \frac{ - 72}{ - 3}  + 1

 = 24 + 1

\underline\boxed{n = 25}

 {n}^{th} term =  {t}(n)  = a + (n - 1)d

Therefore, \: the \: middle \: terms are  \\  {t}(12) or {t}(13)

 {t}(12) = a + 11d = 19 + 11( - 3) =  - 14 \\  {t}(13)  = a + 12d = 19 + 12( - 3) =  - 17

Therefore the middle terms are - 14 and - 17.

Answered by Anonymous
1

Answer:

19,16,13,10,......,−53</p><p></p><p>a \: (first \: term) = 19a(firstterm)=19</p><p></p><p>d \: (common \: difference) = {t}(2) - {t}(1)d(commondifference)=t(2)−t(1)</p><p></p><p>d = 16 - 19 = - 3d=16−19=−3</p><p></p><p>$$\underline\boxed{d = - 3}$$</p><p></p><p>$$l \: (last \: term) = - 53$$</p><p></p><p>$$n(no.of \: terms) = \frac{l - a}{d} + 1$$</p><p></p><p>$$n = \frac{ - 53 - 19}{ - 3} + 1$$</p><p></p><p>$$= \frac{ - 72}{ - 3} + 1$$</p><p></p><p>$$= 24 + 1$$</p><p></p><p>$$\underline\boxed{n = 25}$$</p><p></p><p>$${n}^{th} term = {t}(n) = a + (n - 1)d$$</p><p></p><p>$$\begin{lgathered}Therefore, \: the \: middle \: terms are \\ {t}(12) or {t}(13)\end{lgathered}$$</p><p></p><p>$$\begin{lgathered}{t}(12) = a + 11d = 19 + 11( - 3) = - 14 \\ {t}(13) = a + 12d = 19 + 12( - 3) = - 17\end{lgathered}$$</p><p></p><p></p><p>

Therefore the middle terms are - 14 and - 17.

Similar questions