Math, asked by shivam4564, 1 year ago

please solve the above question with explanation

Attachments:

Answers

Answered by TheConqueror
1
The required value is 2..
hope it helps you...
Attachments:
Answered by rakeshmohata
1
Hope u like my process
=====================
 =  >  \sin( \theta )  +  \cos( \theta )  = p \\  \\  =  >  \sec( \theta )  +   \csc( \theta )  = q \\  \\ or. \:    \:  \frac{1}{ \cos( \theta ) }  +  \frac{1}{ \sin( \theta ) }  = q \\  \\ or . \:  \:  \frac{ \sin( \theta  )  +  \cos( \theta ) }{  \sin( \theta ) \cos( \theta ) }  = q \\  \\ or. \:  \:  \frac{p}{ \sin( \theta )   \cos( \theta ) }  = q \\  \\ or. \:  \:  \frac{q}{p}  =   \frac{1}{ \sin( \theta )  \cos( \theta ) }
Now,

 =  >  \frac{q}{p} ( {p}^{2}  - 1) \\  \\  =  \frac{1}{ \sin( \theta ) \cos( \theta )  } ( {( \sin( \theta )  +  \cos( \theta ))  }^{2}  - 1) \\  \\  =  \frac{1}{ \sin( \theta ) \cos( \theta )  } (  (\sin ^{2} ( \theta )  +  \cos ^{2} ( \theta )  - 2 \sin( \theta )  \cos( \theta ) ) - ( \sin ^{2} ( \theta )  +  \cos ^{2} ( \theta ) )) \\  \\  =  \frac{2 \sin( \theta ) \cos( \theta )  }{ \sin( \theta ) \cos( \theta )  }  = 2
_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_

Hope this is ur required answer

Proud to help you
Similar questions